Linear and Geometric Algebra

April 2025 printing

Alan Macdonald

Professor Emeritus of Mathematics Luther College, Decorah, IA 52101 USA macdonal@luther.edu faculty.luther.edu/~macdonal

Geometry without algebra is dumb! - Algebra without geometry is blind!

- David Hestenes

The principal argument for the adoption of geometric algebra is that it provides a single, simple mathematical framework which eliminates the plethora of diverse mathematical descriptions and techniques it would otherwise be necessary to learn.

- Allan McRobie and Joan Lasenby

To David Hestenes,

founder, chief theoretician, and most forceful advocate for modern geometric algebra and calculus, and inspiration for this book.

To my Grandchildren, Aida, Pablo, Miles, Graham.

Contents

Contents iii Preface vii				
Ι	Li	near Algebra	1	
1	Vec	tors	3	
	1.1	Oriented Lengths	3	
	1.2	\mathbb{R}^n	12	
2	Vec	tor Spaces	15	
	2.1	Vector Spaces	15	
	2.2	Subspaces	20	
	2.3	Linear Combinations	22	
	2.4	Linear Independence	24	
	2.5	Bases	27	
	2.6	Dimension	30	
3	Ma	trices	33	
	3.1	Matrices	33	
	3.2	Systems of Linear Equations	45	
4	Inn	er Product Spaces	51	
	4.1	Oriented Lengths	51	
	4.2	\mathbb{R}^n	56	
	4.3	Inner Product Spaces	57	
	1.1	Orthogonality	62	

II	\mathbf{G}	eometric Algebra	71
5	\mathbb{G}^3		73
	5.1	Oriented Areas	73
	5.2	Oriented Volumes	79
	5.3	\mathbb{G}^3	81
	5.4	Complex Numbers	84
	5.5	Rotations in \mathbb{R}^3	89
6	\mathbb{G}^n		93
	6.1	\mathbb{G}^n	93
	6.2	Inner and Outer Products	101
	6.3	How Geometric Algebra Works	107
	6.4	The Dual	109
	6.5	Product Properties	115
7	Pro	ject, Rotate, Reflect	121
	7.1	Project	121
	7.2	Rotate	126
	7.3	Reflect	128
II	I I	Linear Transformations 1	L 33
8	Line	ear Transformations	135
	8.1	Linear Transformations	135
	8.2	Adjoint Transformations	144
	8.3	Outermorphisms	148
	8.4	Determinants	151
9	Rep	presentations	153
	9.1	Matrix Representations	153
	9.2	Eigenvalues and Eigenvectors	160
	9.3	Invariant Subspaces	166
	9.4	Symmetric Transformations	169
	9.5	Orthogonal Transformations	173
	9.6	Skew Transformations	177
	9.7	Singular Value Decomposition	181

IV	7 1	The Magical Conformal Model	187
10	The	Conformal Model	189
	10.1	The Geometric Algebra $\mathbb{G}^{r,s}$	189
	10.2	The Conformal Model	190
	10.3	Dual Representations	191
		Direct Representations	
		Transform Points	
	10.6	Transform Objects	195
		Intersections	
A	Pre	requisites	201
	A.1	Sets	201
		Logic	
		Theorems	
		Functions	
In	dev		207

Preface

Linear algebra is part of the standard undergraduate mathematics curriculum because it is of central importance in pure and applied mathematics. It was not always so. The wide acceptance of vector methods did not occur until early in the twentieth century. The pioneers were two physicists: the Englishman Oliver Heaviside and the American Josiah Willard Gibbs, beginning in the late 1870's. Linear algebra allows easy algebraic manipulation of vectors. But it is not the latest word on the algebraic manipulation of geometric objects.

Geometric algebra is an extension of linear algebra pioneered by the American physicist David Hestenes in the 1960's. Geometric algebra and its extension to geometric calculus unify, simplify, and generalize vast areas of mathematics, including linear algebra, vector calculus, exterior algebra and calculus, tensor algebra and calculus, quaternions, real analysis, complex analysis, and euclidean, noneuclidean, and projective geometries. They provide a common mathematical language for many areas of physics (classical and quantum mechanics, electrodynamics, special and general relativity), computer science (graphics, robotics, computer vision), engineering, and other fields.¹

Just as linear algebra algebraically manipulates one dimensional objects (vectors) in a coordinate-free manner, geometric algebra algebraically manipulates higher dimensional objects – lines, planes, ... (multivectors) in a coordinate-free manner. Even within linear algebra, many topics are improved by using geometric algebra.

Geometric algebra subsumes, unifies, simplifies, and generalizes the vector, complex, quaternion, exterior (Grassmann), and tensor algebras.

I believe that it is past time to incorporate some geometric algebra in the introductory linear algebra course. This book provides a text for such a course. Single variable calculus is not a prerequisite. But for most students a mathematical maturity equivalent to that gained in such a course probably is.

¹Several advanced geometric algebra books have appeared since 2007: Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics (2015); Understanding Geometric Algebra for Electromagnetic Theory (2011); Geometric Algebra with Applications in Engineering (2009); Invariant Algebras and Geometric Reasoning (2008); Geometric Algebra for Physicists (2007); Geometric Algebra for Computer Science (2007).

My A Survey of Geometric Algebra and Geometric Calculus provides an introduction for someone who already knows linear algebra. It contains a guide to further reading, online and off. It is available at this book's webpage.

Part I of this book is standard linear algebra. Part II introduces geometric algebra. Part III covers linear transformations and their geometric algebra outermorphism extensions. Part IV is devoted to the conformal model.

A majority of the topics in the traditional linear algebra course is treated. The major exception is algorithms. For example, the algorithm for inverting a matrix is not covered. The concept and applications of the inverse are important. They are used in many places in this book. But the algorithm to compute the inverse teaches little about the concept or its applications. Similar remarks apply to algorithms for row reduction, solving systems of linear equations, evaluating determinants, computing eigenvalues and eigenvectors, etc.

To me, the benefit/cost ratio of including the algorithms is too low. I do not need them for the theoretical development. No one applies them by hand anymore – except for exercises in linear algebra textbooks! They take up a substantial fraction of the standard syllabus, time that can be better spent on other topics – like geometric algebra. Why teach them in an elementary linear algebra course?

Some exercises and problems in the text require the use of the free multiplatform Python module \mathcal{GA} lgebra. It is based on the Python symbolic computer algebra library SymPy (Symbolic Python). \mathcal{GA} lgebraPrimer.pdf at the book's web site describes the installation and use of the module.

With this June 2024 printing, \mathcal{GA} light is no longer being updated. It still installs and runs, but unfortunately it is not in perfect shape. Please report any problems you have and I'll update GAlgebraPrimer.

The book covers matrix arithmetic, the application of matrices to systems of linear equations, the matrix representation of linear transformations, the matrix version of the singular value decomposition, and several matrix applications. However, matrices play a smaller role than in most linear algebra texts. A major reason is that matrices are used in the omitted algorithms. Also, geometric algebra often replaces matrices with better alternatives. For example, the geometric algebra definition of a determinant is intuitive and simple and does not involve matrices. And geometric algebra provides better representations than matrices for important classes of linear transformations, as shown in the text for projections, rotations, reflections, and orthogonal and skew transformations.

There are over 200 exercises interspersed with the text. They are designed to test understanding of and/or give simple practice with a concept just introduced. My intent is that students attempt them while reading the text. Then they immediately confront the concept and get feedback on their understanding. There are over 300 more challenging problems at the end of most sections.

The exercises replace the "worked examples" common in most mathematical texts, which serve as "templates" for problems assigned to students. We teachers know that students often do not read the text. Instead, they solve assigned problems by looking for the closest template in the text, often without much understanding. My intent is that success with the exercises requires engaging the text.

Everyone has their own teaching style, so I would ordinarily not make suggestions about this. However, I believe that the unusual structure of this text (exercises instead of worked examples), requires an unusual approach to teaching from it. I have placed some thoughts about this in the file "LAGA Instructor.pdf" at the book's web site. Take it for what it is worth.

There is plenty of material here for a one semester course. The actual text is only about 190 pages, rather short for a linear algebra text, much less for one incorporating geometric algebra. One reason is that I have tried to avoid the "bloated textbook syndrome". Another is that the exercises mean that a reader will spend more time per page than is usual in an elementary mathematics text.

An instructor should be wary of adopting a nonstandard text such as this for a course as fundamental as linear algebra. It might allay worries about this to know that this book can be used as a linear algebra text, without geometric algebra. Chapters 1-4 and Sections 8.1, 8.2, 9.1-9.4, and 9.7 use no geometric algebra.² They cover the majority of topics in the traditional linear algebra course, with the exception of the aforementioned algorithms and determinants. Thus an instructor can include geometric algebra as time permits, or teach a two track course, with some students studying geometric algebra and some not.

The first part of the index is a *symbol* index.

Please send corrections, typos, or any other comments about the book to me. I will incorporate then in new printings of the book as appropriate.

Geometric calculus is a powerful extension of vector calculus, just as geometric algebra is a powerful extension of vector algebra. The divergence and Stokes' theorems are special cases of a very general theorem relating derivatives to integrals. Also, complex variable theory extends to arbitrary (even and odd) dimensions. I have published a sequel to this book, *Vector and Geometric Calculus*. That book's website is http://faculty.luther.edu/~macdonal/vagc/.

Acknowledgements.

I give thanks to Gregory Grunberg, who has done much to improve this book, especially Chapter 10. The book is better for his efforts.

Professor Leo Dorst provided helpful expert commentary.

Allan Cortzen has improved this book in many ways, including providing better proofs of several theorems.

Professor Carl Sturtivant provided better proofs of several theorems and helped clarify the foundation of geometric algebra.

I thank J. M. Caillol, Pr, Ian-Charles Coleman, George Craig, Gabriel Demuth, Peeter Joot, Christophe Louargant (who provided a correction to my "proof" of Theorem 9.28), Gez Keenan, Dr. Nicholas R. Todd, Adem Semiz, Dr. Vijay Sonnad, Quirino M. Sugon Jr., and Ginanjar Utama for helpful comments and suggestions. I thank Martin Barrett, Professor Philip Kuntz, James

²Except for the definition of determinants (p. 157). Note however that determinants are not a prerequisite for anything important in the linear algebra part of the book. In particular, they are not used in the discussion of eigenvalues.

Murphy, Robert Rowley, and Professor John Synowiec for reading all/most of the text and providing extensive and helpful comments and advice.

I thank Professor Kate Martinson for help with the cover design.

Printings

From time to time I issue a new printing corrections and improvements due to me and others. The version is shown on the title page.

Printing. Chapter 7 has been corrected to better label \mathbb{R}^n and \mathbb{G}^n objects.

September 2023 Printing. Section 6.3: $How\ Geometric\ Algebra\ Works$ has been improved.

December 2023 Printing. Section 6.3: How Geometric Algebra Works has been further improved.

June 2024 Printing. There are minor improvements in the text. All errors known to me have been corrected.

April 2025 Printing. I thank Dr. Isaac To for pointing out serious errors in Chapter 7 and for keeping me on track as I struggled to correct this. I found correct proofs in a paper by Dr. Eric Chisolm.³ Thomas Hellsén has pointed out another error.

There are minor improvements in the text. All errors known to me have been corrected.

The current versions of GAlgebra Primer.pdf and cm3.ipynb are available at the book's website and are bundled with the $\mathcal{G}\!A$ lgebra distribution.

In general the position as regards all such new calculi is this - That one cannot accomplish by them anything that could not be accomplished without them. However, the advantage is that, provided such a calculus corresponds to the inmost nature of frequent needs, anyone who masters it thoroughly is able - without the unconscious inspiration of genius which no one can command - to solve the respective problems, indeed to solve them mechanically in complicated cases in which, without such aid, even genius becomes powerless. Such is the case with the invention of general algebra, with the differential calculus, Such conceptions unite, as it were, into an organic whole countless problems which otherwise would remain isolated and require for their separate solution more or less application of inventive genius. — C. F. Gauss

³ Geometric Algebra https://arxiv.org/pdf/1205.5935, pp. 52-53.

To the Reader

Linear algebra is indispensable in many disciplines, including mathematics, statistics, physics, computer science, chemistry, biology, engineering, and economics. Linear algebra is more widely used than any other college level mathematics, with the possible exception of calculus. You can see yourself that it is widely used: whenever a new concept is introduced in the text, Google it. You will find many links.

Most of the mathematics taught in single variable calculus courses has been known for 250 years. But mathematics is not a fixed body of knowledge, unchanged for hundreds of years. You are used to the fact that technology advances year by year. Mathematics also advances, though not as rapidly.

Linear algebra as we know it today is the result of a vast undertaking of abstraction, over centuries, unifying common aspects of many problems in many areas of mathematics and its applications. Do not translate "abstract" as "of no practical value": abstraction gives linear algebra much of its practical power. I hope that you will appreciate this by the time you finish the book.

The central theoretical importance of linear algebra started to be recognized early in the twentieth century. A sophomore linear algebra course has been part of the standard mathematics curriculum only since the early 1970's. The recent availability of cheap powerful computers has made it possible to solve more practical applications of linear algebra, causing an explosion of its use.

Geometric algebra is an extension of linear algebra. It originated in the 1960's and is under vigorous development today. It has found important applications in computer science, engineering, and physics. It is available to game developers for the Xbox and PlayStation video game consoles. This text is an attempt to keep up with these modern developments.

Most students find linear algebra hard, even many who have done well in previous mathematics courses. There are several reasons for this:

- Linear algebra has little connection to earlier courses. For example, this
 text makes only occasional, nonessential, reference to calculus.
- The large number of definitions and theorems can be overwhelming.
- Reasoning dominates calculation in linear algebra. The reasoning requires
 what has been called "a mathematical frame of mind". This is a new way
 of thinking, difficult to describe to those who have not acquired it.

How should you cope with these difficulties? Research clearly shows that *actively* engaging course material improves learning and retention. Here are some ways to actively engage the material in this book:

- Don't just read the text, *study* the text. This may not be your habit, but many parts of this book require reading and rereading again later before you understand.
- Instructors in your previous mathematics courses have probably urged you to try to *understand*, rather than simply memorize. That advice is especially appropriate for this text.
- Many statements in the text require some thinking on your part to understand. Take the time to do this instead of simply moving on. Sometimes this involves a small computation, so have paper and pencil on hand.
- Definitions are important. Take the time to understand them. You cannot know a foreign language if you do not know the meaning of its words. So too with mathematics. You cannot know an area of mathematics if you do not know the meaning of its defined concepts.
- Theorems are important. Take the time to understand them. If you do not understand what a theorem says, then you cannot understand its applications.
- Exercises are important. Attempt them as you encounter them in the text. They are designed to test your understanding of what you have just read. Some are trivial, there just to make sure that you are paying attention. Do not expect to solve them all. Even if you cannot solve an exercise you have learned something: you have something to learn!

The exercises require you to think about what you have just read, think more, perhaps, than you are used to when reading a mathematics text. This is part of my attempt to help you start to acquire that "mathematical frame of mind".

Write your solutions neatly in clear correct English.

- Proofs are important, but perhaps less so than the above. On a first reading, don't get bogged down in a difficult proof. On the other hand, one goal of this course is for you to learn to read and construct mathematical proofs better. So go back to those difficult proofs later and try to understand them.
- Important: take the above points seriously!

Appendix A, *Prerequisites*, describes the mathematical background necessary to read this text. You might look it over now, to make sure that you are ready.

Some exercises and problems in the text require calculations unfeasible to perform by hand. GAlgebraPrimer.pdf, available at the book's webpage, describes how to install and use the computer algebra system \mathcal{GA} lgebra for this. It is written in Python, a free multiplatform language.

Index

7 4 5	
$\operatorname{tr}(g^*f),\ 164$	i, 84
*	\Leftrightarrow , 202
adjoint, 144	\Rightarrow , 202
dual, 109	\in , \notin , 201
transpose, 41	· (inner product)
$A^{\dagger}, 98$	\mathbb{G}^n , 101
C[a,b], 26, 32, 60	$\mathbb{R}^n, 56$
$C^1[a,b], 137$	inner product space, 57
E, 192	oriented lengths, 51
I, 99], 101, 117
[A, B], multivectors, 118	$M_{\mathbf{B}}, 128$
[f, g], 179	P _B , 122
$[i]_{\mathcal{B}'\mathcal{B}}, 44$	$P_{\mathbf{B}}(\mathbf{U}),122$
&, 202	$P_{\mathbf{U}}(\mathbf{v}),67$
\mathbb{G}^3 , 81	$P_{\mathbf{u}}(\mathbf{v}),52$
\mathbb{G}^n , 93	$R_{i\theta}, 89$
$\mathbb{G}^n_+, 97$	i, 151
I, 84	\mapsto , 205
\mathbb{L}^3 , 7	$\mathcal{L}(\mathbf{U}), 164$
P , 17	$\mathcal{L}(\mathbf{U}, \mathbf{V}), 143$
$P_n, 17$	$\langle A \rangle_j$, 96
\mathbb{R}^n , 12, 56	$\langle M \rangle_k$, 96
\mathbb{R}^n vector, 12	$\mathcal{N}(A)$, 47
$\mathbb{R}^{r,s}$, 189	$\mathcal{N}(f),140$
$\mathbf{U}^{\perp},66$	\land (outer product)
f*, 144	\mathbb{G}^n , 101
∞ , 190	$\mathbb{R}^3, 75$
\cap , 201	$\overline{\mathbb{R}}^n$, 193
o, 206	$\ , \perp, 66$
×, 112	\perp , 64, 66
\cup , 201	$\mathcal{R}(f),140$
†, 97	, 117
$\mathbf{e}_{J},99$	$e^{i\theta}$, 85
$\mathbf{e}_{\pm},190$	sgn, 120
\mathbf{e}_{i} , 52	⊆, 201
Ø, 201	$\stackrel{-}{\rightarrow}$, 205
∞ . 190	f. 148, 150

$\mathbf{v}_{\parallel},66$	Cavalieri's principle, 65
$\mathbf{v}_{\perp}^{''},66$	center, GA^n , 114
	centralizer, 44
\mathbb{G}^n , 99	change of basis
\mathbb{R}^n , 14	matrix, 156
complex number, 86	vector, 44
inner product space, 58	characteristic
oriented area, 73	equation, 164
oriented length, 3	polynomial, 164
oriented volume, 79	circular reasoning, 185
vector space, 61	cm3 notebook, 189, 200
$ f _{\mathcal{O}},143$	coherence, 127, 197
$ \mathbf{h} _{\mathcal{C}}, 184$	column rank, 146
$ \mathbf{h} _{\mathcal{F}}, 185$	column space, 146
\widehat{A} , 113	commutative, 5
{}, 201	commutator
j-vector part, 96	linear transformations, 179
k-blade, 94	multivectors, 118
k-vector, 93, 94	complex number, 85
k-volume, 64, 103	cartesian form, 85
o, 190	polar form, 85
1-1, 205	complex plane, 85
1 1, 200	condition number, 185
additive inverse, 18	conformal model, 190
adjoint, 144	conformal split, 192
Aida, 90	conjugate, 86
angle, 89	contrapositive, 202
between subspaces, 124	converse, 202
between vectors, 59	coordinate-free, vii, 8, 9, 51, 77, 89,
bivector, 85, 89	121, 153
anticommute, 82	coordinates
antisymmetrized geometric product,	with respect to a basis, 28
120	with respect to a basis, 26 with respect to coordinate axes,
associated homogeneous equation, 47	8
associative, 6, 206	corollary, 204
axial vector, 114	correlation, 62
axiai vector, 114	matrix, 172
basis, 27	counterexample, 203
$\mathbb{G}^3,82$	covariance, 195
reciprocal, 119, 147	Cramer's rule, 106, 159
bivector, 81	cross product, 112, 150
direction, 197	cyclic reordering, 97
blade, 94, 103	cyclic reordering, 37
	de Moivre's theorem, 88
bound vector, 11	determinant
canonical basis 82 05	
canonical basis, 82, 95 car analogy, 13, 17	linear transformation, 151
Cartan-Dieudonné theorem, 173	matrix, 157
cartesian form, 85	traditional, 157
· · · · · · · · · · · · · · · · · · ·	diagonal, 39
Cauchy-Schwarz inequality, 58, 83	matrix, 42

diagonalizable, 161	GAlgebra, viii, xii
orthogonally, 176	geometric algebra
diagonalize, 163	$\mathbb{G}^3, 73$
dilation, 177, 193	\mathbb{G}^n , 93
dimension, 21, 30, 31	geometric algebra \mathbb{G}^3 , 73, 81
dimension agnostic, 108, 121, 123,	geometric multiplicity, 160
129, 130	geometric product
direct proof, 203	$\mathbb{G}^3,82$
direct representation, 190	\mathbb{G}^n , 93
circle, 192	precedence, 82
line, 192	Google, 162
plane, 192	grade, 97, 137
point pair, 198	grade involution, 113
sphere, 192	Gram-Schmidt orthogonalization, 64,
direct sum, 93	103, 122, 189
distance, 122	Grassmann algebra, 111
distributive, 5	group, 136
dual, 109	
dual representation, 190	Heisenberg's uncertainty relations, 44
circle, 191	Hodge dual, 111
line, 191	homogeneity, 9
plane, 191	homogeneous, 190
sphere, 191	homomorphism, 136
duality, 111	hyperplane, 128
	idempotent, 125
eigenblade, 168	identity
eigenspace, 160, 161	matrix, 39
eigenvalue, 160	multiplicative, 39
eigenvector, 160	transformation, 151
empty set \emptyset , 201	identity matrix, 39
entangled, 90	if and only if, 202
equivalent, 202	if-then, 202
even permutation, 98	iff, 202
even subalgebra, 97	implies, 202
exponential, 85, 88, 180	indirect proof, 203
extend by linearity, 105	infinite dimensional, 32
extended fundamental identity, 115	inherit, 20
exterior algebra, 111	inner product, 51, 101
	\mathbb{G}^n , 101
finite dimensional, 32	\mathbb{R}^n , 56
Fourier expansion, 63	Frobenius, 164
multivector, 113	geometric interpretation, 123
vector, 63, 69	indefinite, 189
Frobenius inner product, 164	oriented lengths, 51
function, 205	standard, 57
function space, 17	inner product space, 57
fundamental identity	indefinite, 189
$GA^3,82$	intersection, 201
\mathbb{G}^n , 115	intrinsic, 9, 28

invariant subspace, 166	Frobenius, 164, 185
inverse	inner product space, 58
matrix, 39	multivector, 99
multiplicative, 39	operator, 143, 184
multivector, 100	oriented area, 73
inversion, 114, 194	oriented length, 3
isotropy, 9	oriented volume, 79
	trace, 164
join, 198	vector space, 61
	normal equation, 68
k-vector, 94	normal transformation, 147, 165
kernel, 47, 140	normalize, 52
	normalized, 190
Lagrange polynomial, 50	notation, 108
Lagrange's identity, 83	null, 189
Laplace expansion, 159	null vector, 190
law of cosines, 58	nullspace, 47
least squares, 68, 70, 184	linear transformation, 140
left contraction, 101, 117	matrix, 47
Legendre polynomials, 69	NumPy, 70
lemma, 204	• ,
length, 4	odd permutation, 98
linear transformation, 135	one-to-one, 205
linear combination, 22	one-to-one correspondence, 206
linear dependence, 24	onto, 205
linear independence, 24, 108	orientation, 75, 79, 107
linear model, 12	opposite, 99
linear transformation, 135	orthonormal basis, 99
square root, 171	same, opposite, 75, 99
linear transformations	oriented
commutator, 179	area, 73
linearize, 193	length, 3
lunar laser ranging, 132	volume, 79
G 0,	oriented arc, 86
Markov chain, 43	origin, 11
matrix, 33	orthogonal
diagonal, 41, 42	basis, 53
matrix algebra, 33	inner product space, 57
matrix inverse, 39	matrix, 174
matrix representation, 153, 154	oriented length, 53
Maxwell's equation, 114	to a subspace, 64
meet, 198	transformation, 173
metric space, 69	vectors, 53
multivector, 73, 81, 82, 93	orthogonal complement, 66, 109
, , , ,	orthonormal basis, 53
neutron, 90	$\mathbb{R}^{r,s}$, 189
norm	outer product, 75, 101
\mathbb{G}^n , 99	\mathbb{G}^n , 101
\mathbb{R}^n , 14	oriented lengths, 75
complex number, 86	outermorphism, 130, 148

parallelepiped, 64	$\mathbb{G}^{n}, 128$
parallelogram identity, 58	$\mathbb{G}^{n+1,1}, 194$
parameter, 11	reflexive, 158
Parseval's identity, 69	reject
part, 96	\mathbb{G}^n , 121
particular solution, 47	inner product space, 67
Pauli algebra, 88	relativity
Pauli equation, 88	general, 132
permutation	special, 55, 61, 189
even, odd, 98, 107, 120	reverse, 97, 98
permutation parity theorem, 98	right contraction, 117
perp, 64	Rodrigues' formula, 92
phase space, 12	rotate
point pair, 198, 199	\mathbb{G}^3 , 89
point-normal equation, 55	\mathbb{G}^n , 126
polar decomposition	$\mathbb{G}^{n+1,1}, 193$
linear transformation, 183	rotation
matrix, 184	definition, 126
polar form, 85	two reflections, 131
polarization identity, 58	row rank, 146
positive semidefinite, 183	row space, 146
precedence, 82	Tow space, TTo
principal axis theorem, 170	scalar, 4
principal component analysis, 172	set, 201
project, 52	similar, 156
\mathbb{G}^n , 121	similar matrices, 158
inner product space, 67	simultaneous diagonalizability, 165
oriented length, 52	singular value decomposition
projection, 52	linear transformation, 181
definition, 122	matrix, 182
proof, 203	singular values, 181
proof by contradiction, 203	skew
proposition, 202	matrix, 177
pseudoscalar, 96, 99	transformation, 177
unit, 84	spacetime, 61, 189
pseudovector, 114	span
Pythagorean theorem, 58	subspaces, 66
areas, 77	vectors, 22
areas, 11	spectral theorem, 170
quantum mechanics, 44	split, 115
quaternion, 87	standard basis, 27, 56
quaternion, or	standard inner product, 57
range, 140	standard model, 190
rank	subset, 201
$\mathcal{G}A$ lgebra, 50	subspace, 20
	subtraction, 6
linear transformation, 147	Sylvester's law of inertia, 189
matrix, 146	,
reciprocal basis, 119, 147	symbols, ix
recurrence relation, 122 reflect, 128	symmetric, 158 matrix, 169
1611600, 140	1114011X, 109

SymPy, viii	vector, 3, 81
system of linear equations, 45	bound, 11
	direction, 3, 194
tail-to-head, 5	free, 3
tail-to-tail, 5	normal, 55, 191, 193
theorem, 203	tangent, 199
torque, 114	unit, 52
trace	vector equation, 11
linear transformation, 164	vector operations
matrix, 44	oriented lengths, 4
transformation	vector space, 7 , 13 , 15
self-adjoint, 169	$n \times m$ matrices, 34
symmetric, 169	vectors, 11
transition matrix, 44	vectors \leftrightarrow points, 11
transitive, 158	volume, 64, 103
translation, 193	
transpose, 41	well-defined, 75
triangle inequality, 59	$\det(A), 157, 159$
trivector, 81	bivector addition, 75
	norm, 99
union, 201	oriented area addition, 78
unit pseudoscalar, 84	reverse, 97
unit vector 52	trace 164