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 774 ADVANCED PROBLEMS AND SOLUTIONS [November

 suggests the problem: Let TT1,7T2,..- 7T,1 be non-atomic probability measures on a set X. Then there are

 pairwise disjoint sets B1, B2, . . , B, with 7Ti(B) > 1 /n.

 Solution by T. Sekiguchi, University of Arkansas. The proof is by induction: for n = 1, the result is
 obvious. Assume the result for some n > 1.

 Let 7TI, 7T2, ..n. 7Tn +1 be n + 1 non-atomic measures on X. By the induction hypothesis, there exists
 a partition B1,B2,.. ., Bn such that

 7Ti(Ai)> 1/n for i= 1,2, ...,.n.

 Now partition each 4i into Bi1,Bi2, .. B ,Bi n+ with equal probabilities with respect to measure 7Ti, that
 is

 (Bij)=n+l r(B1), i= 1,2,. .., n; j= 1,2,.. ., n + 1.

 Now arrange the second subindex with Bil such that

 gn +I (Bil= 1) max 1 + +I(B#), i=1,2, ... ,n.

 Define

 n + 1

 Bi= U Bi,9 i = 12 .. n
 j=2

 and
 n

 Bn+l= U Bil.
 i=l

 For

 1AiAn, 7Ti(Bi)= n +r(i)n+lssB
 i=2n

 and

 n ~ 1 ~ 1 tn n \
 'gn,(B+1 = I -n 1 1hi + -I1 n n+ 7T rn+1(Bi1)> n+I Tn+i(B)= n+l Tf+1 U B1n n+1 -

 ,=1 i=l 1iicme

 Now induction iS complete.

 Also solved by Leslie Arnold, Ethan Bolker, David Cantor, L. E. Clarke (England), Robert Field & Martin

 Ortel, Ellen Hertz, 0. P. Lossers, (Netherlands), J. G. Mauldon, R. M. Norton, Henry Ricardo, Andrew Siegel,
 Stanford Statistics Problem Solving Group, J. G. Wendel, and the proposer.

 Notes. (1) Mauldon shows with an example the necessity of the assumption that the measures vi have the same

 family of measurable sets.

 (2) The fair division problem and some recent references appear in A. M. Fink, A note on the fair division

 problem, Mathematics Magazine, vol. 37, p. 341.

 (3) Bolker shows that there is a partition for rj(Bi)= l/n, i= 1,2,...,n; j= 2,...,n so that "not only is each
 person satisfied, but each considers the whole partition fair."

 (4) Ricardo points out that a generalization appears as corollaries 1.1, 1.2 in Dubins and Spanier, this
 MONTHLY, vol. 68, 1961, pp. 1 ff.

 (5) Thurmon Whitley writes that the problem is a special case of Lemma 2 of Relations among certain ranges of

 vector measures, a paper by A. Dvoretsky, A. Wild, and J. Wolfowitz, which appeared in the Pacific Journal of

 Mathematics, 1951, p. 66. In fact, this lemma actually shows that the "greater than or equal" required in Problem
 6143 can actually be "equality." Related results also appear in Whitley's Master's Thesis, "Some applications of

 vector-valued measures," University of North Carolina, 1966.
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