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1. Introduction
The purpose of the present series of papers is to study spaces of vector

valued functions defined on a measure space. We call these spaces vector
valued KSthe function spaces (v.f.s.). This study encompasses Dieudonn4’s
theory of KSthe spaces [4] and Gregory’s work [5] on spaces whose elements
are sequences of vectors.
The present paper defines and establishes the basic properties of the

universal spaces (E) and (E’) of which v.f.s.’s are subspaces. In par-
ticular, a Radon-Nikodym theorem for vector valued measures which would
seem to have independent interest is proved.

In the next two papers we shall investigate properties of v.f.s.’s. A com-
pleteness criterion and various compactness theorems will be proved. Also,
results concerning the topological duals of v.f.s.’s will be established. Most
of the results about duals are, as far as I know, new even for KSthe spaces.

In the third paper we shall also investigate a special type of v.f.s. A (E)
formed in a natural way from a KSthe space A and a locally convex topological
vector space E. Special spaces of this type have been investigated by Cc [3].

These papers form the major part of the author’s doctoral dissertation
at the University of Michigan. I wish to thank my advisor, Professor M. S.
Ramanujan, for his interest and help. I wish to also thank Professor M. M.
Day for a suggestion which has shortened several proofs.

2. Terminology and notation

Let Z be a locally compact Hausdorff topological space which is countable
at infinity. Let r be a positive Radon measure on Z. Recall [1, p. 169] that
a function f from Z into a topological space is measurable if given a compact
set K Z and > 0 there is a compact set K’ K with (K K’) <
such that f IK’ is continuous.

Let E be a locally convex Hausdorff topological vector space over the real
field with topological dual E’ and completion/. Let P be the set of con-
tinuous seminorms on E. If p e P, E will denote the completion of the
normed space E/p-1 (0) and 0:E --+ E will denote the canonical map.
If p e P, p0 will denote the gauge of the polar (in E’) of the closed unit ball
U of p. Note that p0(y) Supl(x, Y) and that ifp(y) < , then
(x, y)

_
p(x)p(y). If R Z, c(R) will denote the characteristic

function of R.
A function f Z --, E is p-measurable if 0 f is measurable for every
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p e P. The function f is weally measurable if it is mesurable when E is
given the wek topology a(E, E’) nd is scalarly measurable if (f(.), x’}
is measurable for every x’ E’. It is not difficult to show, using the fact
that a weakly measurable function into a Banach space is measurable [2,
p. 96, Ex. 25] that a function which is weakly measurable is also p-measurable.

3. The spaces 12(E) nd (F)
Consider the space of functions f:Z . E which are p-measurable and

such that fK p o f dr for every compact K and p e P. Define t0 (E)
to be the separated space associated with this space when equipped with the
seminorms fK p fd and 2 (E) to be its completion. If we wish to emphasise
the space Z we write 2z(E). If E is the real field, 0 (E) 2 (E) , the
space of all measurable, locally integrable real valued functions. The space
2 (E) was introduced in [6, pp. 71-73]. It is shown there that fl (E) t E
and if E is a Frdchet space, t0 (E) (E).
Now suppose that F is a separating subset of E’. We define 5(F) to be

the set of a (F, E) scalarly measurable functions g: Z -+ F satisfying the
following condition: for every compact set K Z, g IK bgo where b is real
valued and integrable and go is a a (F, E) scalarly measurable function satisfy-
ing po g

_
1 (everywhere) for some p e P. We identify gl and g2 and write

gl --- g2 if gl g2 scalarly a.e. (i.e., if (x, gl (’)) (x, g2 (")) a.e. for all x e E).
If E and F are the real field,
When E is separable, (E’) has several nice properties.

PROPOSITION 3.1. (1) If E is separable then any g (E’) is weatcly
measurable.

(2) If gl - g in (E’) and both are wealcly measurable, then gl g a.e.
(3) If g (E’ is weakly measurable and p P, then pO g is measurable.

Proof. (1) Let G be the linear span of the dense set {xn} __c E. Let
g e (E’), a compact set K __c Z, and s > 0 be given. Write g I bgo where
b e t and po go

_
1. Since for every n, (xn, go} is measurable, there is a

compact set K’ _c K such that r(K K’)

_
and (x,, go(Z)} I:’ is con-

tinuous for all n [1, p. 170]. Thus (x, g0(z)} IK’ is continuous for any x e G
and so g01 ’ is continuous when E’ is given the topology a(E’, G). Since
the topologies (E’, E) and a (E’, G) agree on the a (E’, E) relatively com-
pact range of go on K’, go I’ is continuous when E’ is given the topology
a (E’, E), whence go and so g are weakly measurable.

(2) This follows from [6, p. 21] which states that two measurable scalarly
a.e. equal functions are a.e. equal.

(3) Since p0 is lower semicontinuous when E’ is given the weak topology,
(p0)-i ([0, a]) is weakly closed for any a >_ 0. Since g is weakly measurable,
-1 )-1 g is measurable [1,g (p0 ([0, a]) is measurable [1], p. 179]. Thus p0

p. 180]. |



VECTOR VALUED KTHE FUNCTION SPACES I 535

We define F (E) as the set of functions f" Z --* E of the form 3"n----1 ( (Rj)xj
where {R.} is a set of disjoint relatively compact measurable sets in Z. The
space A (E) will be the set of functions f" Z -- E of the form ’=t c(Ri)xi
where {Ri} is as above. The spaces r (F) and A (F) are defined similarly.
We note that a function in A (E) or A (F) is measurable (no matter what
topology E or F is given; see [1, p. 169].

In spite of the fact that ft - f2 in 0 (E) does not imply f f2 a.e. (it only
implies that p (f f) 0 a.e. for all p e P) and the fact that gl =- g
in 5 (F) does not imply gt g a.e. we have the following result.

THEOREM 3.2. (1)
(fl, gl) (f, g2) a.e.

If f f in o(E) and g g in (F), then

(2) If f e o (E) and g e (F), then (f, g) is measurable.

Proof. (1) First, let f -= 0 in 0 (E), g e (F), and a compact set K Z
be given. Set gl: bgo with be and pog0

_
1. Then

l(f,g}llK - (pf)[bl 0 a.e.

since f 0. It follows that (f, g) 0 a.e.
Next, let g -= 0 in (F), f e 0 (E), a compact set K Z and e > 0 be given.

Set g ] bgo with b e t and po go

_
1. Since 0 f is measurable, there

is a compact set K’ K such that " (K K’) < and 0 f I’ is continuous.
Now let > 0 be arbitrary. For any Woe K’ pick an open (in K’) neigh-
borhood W0 of w0 such that p (f (z) f (w0)) < on Wo. Find such a neigh-
borhood for each Wo K’ and choose a finite subcovering of K’ giving points
w, w2, w with neighborhoods W, W2, W. Set Vt W and
V.= W-- =W, forj 2, 3, ...,m. Then

<f, g> _jl <f g> l,r.i

<-- " {I <f(z) f(w.), g(z)’> + <f(w), g(z)> !}
jm=l {p(f(z) f(w))p(g(z)) + 0} i

where the zero was inserted above since g 0. Since is arbitrary,
(f, g} I’ 0 a.e. and so (f, g} 0 a.e.
Combining the last sentences of the last two paragraphs, we have proved (1).
(2) Let fe0(E), g e (F), and a compact set K

_
Z be given. Set

g i bgo with b e and p0 o go

_
1. Using [1, p. 178], choose (f) F (E)

so that p (f I f-) --+ 0 a.e. Now (f, g} is measurable since g is scalarly
measurable. Also,

(J’l:, g) (f,, g) <- P (f lK A)lbl o
showing that (f, g) is measurable. |
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Example. This example shows that various conjectures that one might
make concerning 20 (E) and (F) are not true. :No proofs are given;none is
difficult. Let E be a Hilbert space with orthonormal basis e, z e [0, 1].
Let Z [0, 1] with Lebesgue measure. Now E’ E but we shall write
E’ for the dual of E. Let f and f be functions from Z into E defined by
f (z) e and f: (z) 0. Let g, g, und g be functions from Z into E defined
by g (z) e, g. (z) 0, and g (z) c (A) (z)e where A is a non-measurable
subset of Z (cf. [2, p. 81]). The functions f, g, and g are scalarly .e. equal
to zero and so scalarly measurable. But none is norm or weakly measurable.
The g re all in (E’) and are equivalent in spite of the fact that they are not
a.e. equal. Also, ga gives an example of a function in (E’) such that
ga(z) II c(A) (z) is not mesurable. Thus Proposition 3.1 (1) is not

true for general E. The function f 120 (E) even though f (z)II 1 is
measurable and f f[[ dr < . If we give E the topology a (E, E’), then
f e 20 (E) and f f. But it is not the case that f f a.e.

Example. Even though the function gl above is not a (E’, E) measurable,
the function g, which is equivalent to it, is (E, E) measurable. This
always happens when E is a reflexive Banach space [2, p. 95, Ex. 25]. The
following example, adapted from Thomas [8, p. 83], shows that it is possible
for a class of functions in (E’) to contain no a (E’, E) measurable function.
Let Z [0, 1]. Let E l where I is the unit ball of L[0, 1]. Then E’ l.
Define g Z - E by g(t) (b(t)) where b is some function in the ith class
of functions in the unit ball of L[0, 1] satisfying Ib(t) <_ 1 everywhere.
Then g fi (E’). If g g where g (t) (c (t)) then c (t) b (t) a.e. for
every i. Now suppose g’ is a (E’, E) measurable. Then there is a compact
set K

_
Z with (K) > 1/2 such that g’ I is a (E’, E) continuous. But this

implies that c I is continuous for every i, which is impossible.

t. She d] of (E)
We recall ([4], p. 97) that the space 2 is defined as the set of all meas-

urable bounded (a.e.) functions of compact support (a.e.). An element of
(F), i.e., a class of functions in (F), will belong to (F) if there is a func-

tion g in the class and a p e P such that p0o g has compact support and is
bounded. z (F) will be used to emphasize the space Z. If E is a Banach
space, we set (E) {f 2 (E) f l[ }.
The dual of 2 is [4, p. 96].

THEOnE 4.1. 2 (E) (E).

Proof. 20 (E) and its completion 2 (E) have the same dual and so we shall
prove that o(E)’ (E’). It is easy to show that for g (E’), f f < fi
g > d is a continuous linear functional on 20 (E). It remains to show that
any e 2o(E)’ is so represented. As in [4, p. 96], there is a compact set K
such that (f) (f [). Thus we may consider as a member of the dual
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of 20(E) for the set K. Now 2x(E) t2x ) E [6, p. 71] and so
e (x (R) E)’. Thus b is a continuous bilinear functional on 2x X E. By

the Dunford-Pettis Theorem [2, p. 45] and [7, p. 544], there is a unique
g e x(E’) such that (f) f (f, g) dr for any f e x (R) E. Since 2x (R) E is
dense in t2x (E) and since we have shown that f - (f, g) dr is a continuous
linear functional on 0 (E), we must have 6 (f) f (f, g) dTr for all f e 20 (E). |

5. Extension of operations on 20(E)

In spite of the fact that the elements of t2 (E) are not all functions most of
the operations performed on the functions of 0(E) can be extended to all
of ().

DEFINITION. (1) Let g e fi(E’) be fixed. For a given compact set K
set g Ix bgo with b e t2 and p0 o go < 1. The map f-+ (f, go) Ix is, by Theorem
3.2, a well defined linear continuous map of t20 (E) into 2. It thus has a con-
tinuous extension from 2 (E) into t2 which we denote (f, g0)x. Set (f, g)K
(f, go)x.b Ix. Now (f, g>K1 ]xlnx (f, g)x2 [xn a.e. since these functions
agree when f e 20 (E). Thus there is a measurable function (f, g) such that
for any compact set K Z, (f, g)Ix (f, g)x a.e. [4, p. 83, footnote].

(2) For p e P, the map f --+ 0v o f of t20 (E) into 0 (Ev) 2 (Ev) is con-
tinuous. We denote the continuous extension of this map by 0v o f. For
f e 2 (E), p f can now be defined as p 0 f.

(3) If a e L, then the map f -- af on 0 (E) is continuous. We denote
the continuous extension of this map by af. If R

___
Z is measurable and

f e 2(E), f] can now be defined as c(R)f.
Not only do the operations on the functions in 0 (E) extend to 2 (E) but

most of the properties of these operations continue to hold.

PROPOSITION 5.1. (1) Let f e 2 (E), a e 2, p e P, and a ( (F, E) measurable
function g e (F) be given. Suppose that p f <_ a and that apo g is defined
(i.e., p (g(z) when a(z) 0). Then (f, g> <_ ap g.

(2) If fe(E) and g bgoe(E’) where be and pOogo <_ 1, then
](f,g>l <- (Pf)lbl.

(3) The form <f, g) is bilinear.
(4) For a e L, f e e (E), and g e fi (E),

a(f, g) <af, g) (f, ag).

(5) The extension of the seminorm fx p f dr on o (E) to (E) is fx po f dTr.
(6) The element of (E)’ represented by g e (E’) is given by f ---+ j’<f, g) dTr

for any f e (E
(7) For f f e (E and peP,

p o (f -+-f2) <_ p of -4- p of2.
(8) If p e P, f e gt (E), and a e L, then ap f p o (af).
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Proof. We prove only (1) since the proofs of the other parts are simpler.
Set R {z’p(g(z)) }. Let a compact set Kand > 0begiven.
By Proposition 3.1(3), there is a compact set K’ K R with

(K R) K’) < e and p0 o g [K, continuous and so bounded by, say, M.
Now for f gt0 (E),

(*) (f, g}l lK’ - (P f) (P g) l’ - Mpo f
Thus the maps f --+ [(f, g} ]1’ and f -+ (p f)(p0o g) l’ are continuous as
maps from 20 (E) into t. Since the positive cone of t is closed (it is the
intersection of the weakly closed sets

{a et" f ad"

_
0}

as K runs through the set of compact sets K in Z ), the continuous extension of
these maps satisfies (.) for anyf e (E). The result follows immediately. |

LEMMA 5.2. Let g’Z -- F be weakly measurable. Let a e and p e P be
givenandsupposea(z) 0 when p(g(z)) (soapo g is defined). Then:

(1) a p0o g dr Sup f r(E) and p of

(2) If pO o g is finite a.e. and if for every f e A (E) with p o f

_
a[ we have

f (f, g} d- < , then f a lpo g d" < .
Proof. Consider any compact set K of positive measure such that g IK

is weakly continuous and pOo g I is continuous and finite. We claim that
(1) is valid if we only integrate over K. Suppose first that a c (K’) where
K’ K is compact and let > 0 be given. Fix zo K’ and choose xo U
such that

p0 (g (z0))

_
(x0, g (z0)} + e (2r (K’))-1.

Find a neighborhood (in K’) No of z0 such that

p(g(z))

_
(Xo, g(z)) + e(r(K’))-

for z e No. If we do this for each z0 e K’ we get an open covering of K’.
Let N1, Nm be a finite subcovering with xl, ..-, xm the associated ele-
ments of U. Set nn Nn [Jj=l Nj and f j=ic(Rj)xj. Then
pof c(g’) a nd f,pogd f(f, g}d + . This establishes
the clMm for a c (K’). It now follows when a is simple function esily.
The claim is now justified by observing that both sides of (1) (integrating
over K) re continuous as functions of a e nd that the simple functions
are dense in . Set

N

and assume for the moment that r(N) 0. Using [1, p. 170] we can obtain
a sequence of disjoint compact sets (K) of positive measure and disjoint
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from N such that r (Z U K) 0, g I is weakly continuous, and p0 g I
is continuous. Let e > 0 be given. By the first part of the proof we can
find, for each n, an f e 1 (E) with Supp fs Ks such that p fs _< a and

Then
f lalpgdr f (fn, g}dr+ e2-s.

Kn Kn

f la po a P g dr

This establishes (1).

For (2), serf -lf.

Sups .1 f <f., g> dr [+ e.

Then f e A (E) and

Jl alP g dr Jl (f,g)! dr + e.

This proves (2).
It remains to prove (1) when r(N) > 0. In this case f a [p0 o g dr

so it is sufficient to show that given M >_ 0 there is an f e F (E) with p o f _< a
such that f (f, g} dr[ >_ M. It is not hard to find a compact set K N of
positive measure and a ti > 0 such that g I is weakly continuous and a (z) >_ i
on K. The construction of an f e F(E) with the desirable properties now
proceeds as in the first part of the proof. |

LEMMA 5.3. Suppose p e P, f e (E and b e ft. Then:

(1) f poflb[d" Sup{If(f, g}drl" geF(F) and pOog Ib[}.

(2) If for every g eA (F) with pOo g <_ bl we have f l(f, g) dr <
then f p ofl b d" < .

Proof. First we claim that if K is a compact set of positive measure and
f e r (E), then (1) is valid if we only integrate over K. The proof is similar
to that of the first part of Lemma 5.2. We now claim that if f e (E) and
b i is continuous then (1) is valid if we only integrate over K. This is so
since we now know (1) to be true for f e r (E), since both sides of the equality
are continuous as functions of f e 2 (E), and since r (E) is dense in 2 (E) (for
r(E) separates points of (E)’ (E’)). Now (1) and (2) follow as in
Lemma 5.2. |

6. Integrals of elements of 2(E) and (F)
For relatively compact measurable set R and f e (E) we define f,fd-

to be the element of the algebraic dual of F defined by
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(cf. [2, p. 8] ). Similarly, for g e (F) we define fR g drr to be that element of
the algebraic dual of E defined by

x, f g a, f ( x, g,} d,.

THEORE 6.1. (1) U f e (E), then ff& e and

p (ff d) f, p f d.

() fe fi (F), f. e & E’.

Proof. (1) Iffe r(E) then straight from the definition we have ff&eE.
Now for any f e F (E) and p e P, the inequality of (1) holds [2, p. 12]. Thus
the map from r (E) into E given by f ff& is continuous. Therefore it
has a continuous extension fd, from (E) into (r (E) is dense in (E
since it separates points of (E)’ (E’)). Let f e(E) and let
(f,) r (E) be a net such that f, f. Then,

( f d,y ) lim( fd, y ) lim f ( f,y d

//
where the first equality follows from the fact that

i coiuou o (E) d h oIfo he fchc() (E).
Thus

he inequaligy of (1) was shown above on ghe dense subspaee r (N) of (N)
and so is valid on (N).

(2) Segl bgowherebeandp*o N 1. Then forzeU,

Thus f g d is bounded on neighborhood in E nd so is continuous.

Povoswo 6.2. U fe(E) and ff& 0 for every compact set K,
then f O.

Proof. For compact set K nd p e P, set

Q(K, p) {g e F(F) po g c(g)}.



VECTOR VALUED KTHE FUNCTION SPACES I 541

Q(K,p) {f e (E)" Sup (,) f(f,g) d[- 1}

{f e2(E)" pofdr_< 1}

since by Lemma 5.3,

SupgQ(K,p)

Then
](F) (U, Q(K, p))O

I"1, Q(K, p)

{o1

since the last expression is the intersection of sets forming a base of neighbor-
hoods in 2 (E). Thus given an f # 0 in (E) there is a g e 1 (F) such that
f (f, g> dr # 0. The result now follows easily. |

If Z is second countable we can do even better than the above result.

COROLLARY 6.3. If Z is second countable, there is a countable collection
{K.} of compact sets such that if fe(E) and ffdr 0 for all n,

then f O.

Proof. Suppose {0n} is a countable base of open sets. By [1, p. 154],
each 0 can be expressed as a union" 0 U.I L. u N where L. is compact
and r (N) 0. Let be the set of finite unions of the L. Now let f # 0
in 2 (E) be given and by the proposition choose a compact K and a y e F so
that fg(f, y)dr O. By the regularity of the measure we may choose an
open set 0

_
K so that j’o (f, y)dr # 0 and then by the construction of

choose a K’e so that f, (f, y)&r # 0.

7. A Radon-Nikodym theorem

A vector valued Kthe function space (v.f.s.) will be a subspace S (E) of
12 (E) containing I (E) or a subspace T (F) of (F) containing F (F).

LAsetA (E) is said to be solid if for everyf e Aand a e withllatl

_
1,

af A. The solid hull of a set A 2 (E) is the smallest solid solid set con-
raining A. A topology on a v.f.s. S (E) will be called solid if it has a base at
the origin of solid sets. Similar definitions apply to subsets of (F).
The following is a theorem of the Radon-Nikodym type in that it produces a

function from rather simple properties.

THEOREM 7.1. Let S (E) be a solid v.f.s, and dp a linear functional on it.
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Then there is a g (E’) such that (f) f (f, g)d is equivalent to the fol-
lowing:

(1) if f S (E) and if R1 R. is a sequence of measurable sets such
that [J R R (we write R R), then (f ]R --) (f [6), and

(2) for every compact set K Z, there is a p P such that the set

{dp(f) f S(E) and p of <_ c(K)}
is bounded.

Proof. () (1) follows from the dominated convergence theorem. To
see (2), let K be given and write g [K bgo with b e and po go

_
1. Then

ifpof < c(K),

(*=-) The proof is long and is divided into several steps.
(a) For a fixed relatively compact measurable set R, the linear functional

m (R) on E defined by
dp (c (R )x (x, m(R)}

is, by (2), in E’.
(b) Let a compact set K __c Z be given and let p e P be associated with K

by (2). For any measurable set R __c K define

Italy(R) Sup l(x,
where the supremum is taken over all countable partitions {R} of R and
p (xi) _< 1. By an appropriate choice of ai we have

i (Xi, m(Ri)} ,ai(xi, m(Ri)} idp(aic(R,)x,)

limn i%1 (a c (Ri)x)

which is finite by (2). Thus ml(R) < . We now show that miKis
countably additive. First note that

m [ (R) Sup (x, m (R)} I.
Let R K be measurable and (Ri) be a sequence of disjoint measurable sets
whose union is R. Then

_lml(R) Sup{-l(x, m(Ri)}l’p(x) < 1, R c_ R}

To see the reverse inequality, let i > 0 be given and let {S.} and [x} satisfy

< +
We have

(xi, m(Si)) 4)(c(Si)xi) limn(’i=l c(Ri n Si)xi)

= (x, m(R n S.)}
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where the middle equality follows from (1). Thus

Since is arbitrary, ]m ] is countbly additive.
Note that m ] is bsolutely continuous with respect to . By the classical

Radon-Nikodym theorem, there is -mesurble function b(z) such that
m ] (R) fbd. Set b. For ny simple function a a c (R,)
with R K nd the R’s disjoint, define m (a) a m (R). Give the
simple functions the L norm (with respect to, on K), ]] ]]. Then

(,)
p() E a I I() ()ll a 1.

Thus the mp a m (a) is continuous into the wek topology z(E’, E).
We cn thus extend m to mp from L () which is the completion of the
-simple functions. Furthermore, the inequality (.) shows that the image
under the extension of the unit bll of L is contained in the wekly complete
set U. By [2, p. 46] nd [7, p. 544], there is sclrly -mesurble function

U0g "K such that m (a) f ag d. In prticulr, for a c(R) this
implies that

(c(R)x) (x, re(R))

<x, m(c(R)))

** f ((n)x, .’) d,

The function g bove is defined as b:g: where g(z) g:(z) whenever
tl II

b:(z) 0 and g (z) 0 otherwise. Then g is sclarly r-measurable since
@, g(z)) is the quotient of the r-measurable functions @, g’(z)}b:(z) and
b (z) (here 0/0 0).

(c) Now let K1 K2 be a sequence of compact sets such that
K c Kn+l and [,Jn=Kn Z. Define g Z E’ by g [ gl and
g ]g.-K-i g where the gK re constructed as in (b). Since every com-
pact set in Z is contained in some K we have g e (E’). Furthermore,
it follows from (**) that for f e F (E), (f) f (f, g) dr.

(d) We now extend the representation of to a larger class of functions.
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Let f e S (E). Given. a compact set K, let p e P be associated with it by (2).
Let K’

_
K be such that p0 (g (z))I’ <- M and 0 f ], is continuous (into

the Banach space E). We claim that b (f ],) f (f I’, g} dzr. By [1, p.
181], there is a sequence (f) F(E) with Supp f, K’ such that
P (f I’ f-) - 0 uniformly. We know from (c) that (f) f (f, g} dzr.
Now

O,

Choose a sequence c -- co such that p (c (f 1:, f) _< 1. By (2), the set

{(c(fl, f)) n 1, 2, ...}

is bounded and so (f.) -- (f it’ which establishes the claim.
(e) We now extend the representation to nyf e S (E) stisfying (f, g} _> 0.

Let compact set K be given. Let p be ssociated with K by (2). Since 0 o f
is mesurble, we my for ech n find compact set K K such that
K K+i (K K l/n, O f, is continuous, nd p0 g is bounded.
By (d), ffir) ffflr, g}d. By (1), ffl ). By the

monotone convergence theorem,

Thus(fl) f(fl, g}dzr. Now we assert that(f) f(f, g}dr. If
Z is compact we have already shown this. If Z is not compact, let
K1 K.

___
be u sequence of compact sets such that [Jn=l K, Z. By

the above,

By (1), (f[E) @(f). By the monotone convergence theorem,

(e) We now extend the representation to any f e S (E). For f e S (E),
set

f’ [I (f, g)]/(f, g)]f (here 0/0 0).
We hve (f’, g} _> 0 and so by (d), ch (f’) f (f’, g} d’. But (f’, g) [(f,
and so f (f, g) dr < co. With this established we cn repeat the arguments
of (d), using the dominated convergence theorem to get (f) f (f, g)dr.
This completes the proof. |
We now state a version of the bove theorem in the lnguage of vector

valued measures. We only indicate the proof since we shall not use the result
in wht follows.

COROLLARY 7.2. Let m be a function defined on the relatively compact measur-
able sets in Z and taking values in E’. Then there is a g e (E’) such that
m (R) f g d- is equivalent to the following:
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(1) for every x E, (x, m (.)} is countably additive on the g-ring of relatively
compact measurable sets,

(2) ira’(R) O, then re(R) O, and
(3) for every compact set K, there is a p P such that

Sup {ip(m(Ri))} < oo

where the supremum is taten over all countable partitions R} of K consisting of
measurable sets.

Proof. If f ilc(R)xi e I(E) with the Ri’s disjoint, define
(f) i=1 (x, m (Ri)}. The result can now be deduced from Theorem
7.1. (F (E) is not solid and so Theorem 7.1 does not apply, but an inspection
of the proof will show that it is valid for 1 (E).) |

Remark. Gregory [5] gives several examples which show that wrious hy-
potheses of various theorems in the present series of ppers cannot be dropped
even in the ca.se that Z is the set of ntural numbers and r is the counting
mesure.
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