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1. Introduction

The purpose of the present series of papers is to study spaces of vector
valued functions defined on a measure space. We call these spaces vector
valued Kéthe function spaces (v.f.s.). This study encompasses Dieudonné’s
theory of Kéthe spaces [4] and Gregory’s work [5] on spaces whose elements
are sequences of vectors.

The present paper defines and establishes the basic properties of the
universal spaces Q(E) and Q(E’) of which v.f.s.’s are subspaces. In par-
ticular, a Radon-Nikodym theorem for vector valued measures which would
seem to have independent interest is proved.

In the next two papers we shall investigate properties of v.f.s.’s. A com-
pleteness criterion and various compactness theorems will be proved. Also,
results concerning the topological duals of v.f.s.’s will be established. Most
of the results about duals are, as far as I know, new even for K6the spaces.

In the third paper we shall also investigate a special type of v.f.s. A(E)
formed in a natural way from a Kéthe space A and a locally convex topological
vector space E. Special spaces of this type have been investigated by Céc [3].

These papers form the major part of the author’s doctoral dissertation
at the University of Michigan. I wish to thank my advisor, Professor M. S.
Ramanujan, for his interest and help. I wish to also thank Professor M. M.
Day for a suggestion which has shortened several proofs.

2. Terminology and notation

Let Z be a locally compact Hausdorff topological space which is countable
at infinity. Let 7 be a positive Radon measure on Z. Recall [1, p. 169] that
a function f from Z into a topological space is measurable if given a compact
set K € Z and € > 0 there is a compact set K’ C K with 7 (K — K') < ¢
such that f | is continuous.

Let E be a locally convex Hausdorff topological vector space over the real
field with topological dual E’ and completion B. Let P be the set of con-
tinuous seminorms on E. If p ¢ P, E, will denote the completion of the
normed space E/p *(0) and 6,: E — E, will denote the canonical map.
If p e P, p° will denote the gauge of the polar (in E’) of the closed unit ball
U of p. Note that p’(y) = Sup.w | &, y) | and that if p’(y) < =, then
[, 9| < p@)p°@). If R € Z, ¢(R) will denote the characteristic
function of R.

A function f : Z — E is p-measurable if 6, o f is measurable for every
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peP. The function f is weakly measurable if it is measurable when FE is
given the weak topology o (B, E') and is scalarly measurable if (f(-), )
is measurable for every z’ ¢ E’. It is not difficult to show, using the fact
that a weakly measurable function into a Banach space is measurable [2,
p. 96, Ex. 25] that a function which is weakly measurable is also p-measurable.

3. The spaces Q(E) and Q(F)

Consider the space of functions f:Z — E which are p-measurable and
such that [xpofdr < « for every compact K and p e P. Define Q (E)
to be the separated space associated with this space when equipped with the
seminorms [ ¢ p o f dr and @ (E) to be its completion. If we wish to emphasise
the space Z we write Qz(F). If E is the real field, Q(E) = Q(E) = Q, the
space of all measurable, locally integrable real valued functions. The space
Q () was introduced in [6, pp. 71-73]. It is shown there that Q(E) = @ ® , E
and if E is a Fréchet space, Qo (E) = Q(E).

Now suppose that F is a separating subset of E’. We define Q(F) to be
the set of ¢ (F, /) scalarly measurable functions ¢ : Z — F satisfying the
following condition: for every compact set K C Z, ¢ |x = bgo where b is real
valued and integrable and g, is a o (F, E) scalarly measurable function satisfy-
ing p”o g < 1 (everywhere) for some p e P. We identify g; and g, and write
g1 = g2 if g1 = go scalarly a.e. (i.e., if (x, g1 (+)) = (z, g2(-)) a.e. for allz ¢ F).
If E and F are the real field, Q(F) = Q.

When E is separable, & (E’) has several nice properties.

ProrositioNn 3.1. (1) If E s separable then any geQ(E’) 1s weakly
measurable.

2) If g1 = gstn Q(E') and both are weakly measurable, then g3 = g» a.e.

(3) If g e Q(E') is weakly measurable and p € P, then p° o g is measurable.

Proof. (1) Let G be the linear span of the dense set {z,} € E. Let
geQ(E"), a compact set K C Z, and £ > Obegiven. Write g |x = bgo where
beQ and p’oge < 1. Since for every n, (x., go) is measurable, there is a
compact set K’ C K such that 7(K — K’) < ¢ and (x,, ¢o(2)) |x is con-
tinuous for all n [1, p. 170]. Thus (z, go(2)) |x is continuous for any z ¢ G
and so go| x» is continuous when E’ is given the topology o (E’, G). Since
the topologies o (B, E) and o (£’, G') agree on the o (£’, E) relatively com-
pact range of gy on K’, go|x is continuous when E’ is given the topology
o (E', E), whence g, and so g are weakly measurable.

(2) This follows from [6, p. 21] which states that two measurable scalarly
a.e. equal functions are a.e. equal.

(3) Since p° is lower semicontinuous when E’ is given the weak topology,
@*)7(0, a]) is weakly closed for any @ > 0. Since g is weakly measurable,
g o )70, a]) is measurable [1], p. 179]. Thus p’o ¢ is measurable [1,
p. 180]. §
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We define T' (%) as the set of functions f: Z — E of the form D ¢ (R;)z;
where {R;} is a set of disjoint relatively compact measurable sets in Z. The
space A(E) will be the set of functions f : Z — E of the form D c(R;)x;
where {R;} is as above. The spaces I'(F) and A(F) are defined similarly.
We note that a function in A(E) or A(F) is measurable (no matter what
topology E or F is given; see [1, p. 169].

In spite of the fact that fi = f» in Q(¥) does not imply fi = f» a.e. (it only
implies that po (i — fo) = 0 a.e. for all p e P) and the fact that g1 = ¢,
in &(F) does not imply g1 = g¢» a.e. we have the following result.

TareorEM 3.2. (1) If i = fo in Q(E) and g1 = g¢» in Q(F), then
(f1, gl> = (fz, gz) a.e.

2) If feQ(E) and g e Q(F), then {f, g) is measurable.

Proof. (1) First,let f = 0in Q(E), g e @(F), and a compact set K C Z
be given. Set g|x = bgo with beQ and p°ogy < 1. Then

[ lle < ool =0 ae.

since f = 0. It follows that {f, g) = 0 a.e.

Next,let g = 0in Q(F), f e Q(E), a compact set K C Z and ¢ > 0 be given.
Set g |x = bgo with beQ and p°o gy < 1. Since 6, o f is measurable, there
is a compact set K’ C K such that 7 (K — K’) < ¢ and 8, o f |- is continuous.
Now let § > 0 be arbitrary. For any wo e K’ pick an open (in K’) neigh-
borhood Wy of wo such that p (f(z) — f(we)) < é on Wy. Find such a neigh-
borhood for each wo e K’ and choose a finite subcovering of K’ giving points
Wi, Wz, °**, Wn With neighborhoods Wi, Wy, -+, Wn. Set Vi = Wiand
Vi=W; — UiZiWiforj = 2,3, ---,m. Then

|<f7 g)HK’ = ?=1|<f, g)l“’i
< 2= {l{f) — flws), geN| + [Fwi), 9@} v,
< 2ia{p(@) — fw))p'(g@)) + 0} |+,
<34|b]
where the zero was inserted above since ¢ = 0. Since & is arbitrary,
{f, 9| = 0a.e. and so {f, g) = 0 a.e.
Combining the last sentences of the last two paragraphs, we have proved (1).
(2) Let feQ(E), geQ(F), and a compact set K C Z be given. Set
glx = bgo with beQ and p’o go < 1. Using [1, p. 178], choose (f,) S I'(E)

sothat po (f|g — f») — 0 a.e. Now (., ¢) is measurable since g is scalarly
measurable. Also,

I(flx’g> - <fﬂyg>l S pe (f'x _'fn)lb,'_>0 a.e.
showing that (f, g) is measurable. |



536 ALAN L. MACDONALD

Ezxample. This example shows that various conjectures that one might
make concerning 2o (E) and Q(F) are not true. No proofs are given; none is
difficult. Let E be a Hilbert space with orthonormal basis e,, z€[0, 1].
Let Z = [0, 1] with Lebesgue measure. Now E’ = E but we shall write
B’ for the dual of E. Let fi and f; be functions from Z into E defined by
fik) = e.and fo(2) = 0. Letgi, g2, and g3 be functions from Z into E’ defined
by ¢1(2) = e., g2(2) = 0,and gs(2) = ¢(4) (z)e. where A is a non-measurable
subset of Z (cf. [2, p. 81]). The functions fi1, g1, and g; are scalarly a.e. equal
to zero and so scalarly measurable. But none is norm or weakly measurable.
The g; are all in &(E’) and are equivalent in spite of the fact that they are not
a.e. equal. Also, g3 gives an example of a function in Q(E’) such that
lgs(z) || = ¢(4)(z) is not measurable. Thus Proposition 3.1 (1) is not
true for a general E. The function fi ¢ Q(E) even though || fi(2) || = 1is
measurable and [|| fil| dr < . If we give E the topology ¢ (E, E’), then
fieQ(E) and fi = fo. But it is not the case that fi = f. a.e.

Ezxample. Even though the function ¢; above is not o (£’, E) measurable,
the function g», which is equivalent to it, is o (&', E) measurable. This
always happens when E is a reflexive Banach space [2, p. 95, Ex. 25]. The
following example, adapted from Thomas [8, p. 83], shows that it is possible
for a class of functions in @(E’) to contain no ¢ (£’, E) measurable function.
Let Z = [0,1]. Let E = Iy where I is the unit ball of L[0,1]. Then E’ = I7 .
Defineg : Z — E' by g(t) = (b:(t)); where b; is some function in the 7th class
of functions in the unit ball of L”[0, 1] satisfying | b;(¢) | < 1 everywhere.
Then g e Q(E'). If ¢’ = g where ¢’ (¢) = (c;(t)): then ¢;(¢) = b;(¢) a.e. for
every . Now suppose ¢’ is o (E’, E) measurable. Then there is a compact
set K C Z with w (K) > 1 such that ¢’ |z is ¢ (E’, E) continuous. But this
implies that ¢; |x is continuous for every ¢, which is impossible.

4. The dual of Q(E)

We recall ([4], p. 97) that the space ® C @ is defined as the set of all meas-
urable bounded (a.e.) functions of compact support (a.e.). An element of
Q(F), i.e., a class of functions in & (F), will belong to & (F) if there is a funec-
tion ¢ in the class and a p ¢ P such that p’o ¢ has compact support and is
bounded. &;(F) will be used to emphasize the space Z. If E is a Banach
space, we set ®(E) = {feQ(E) : | f| ¢®}.

The dual of @ is ® [4, p. 96].

Taeorem 4.1. Q(E) = &(E').

Proof. Q0(E) and its completion Q (E) have the same dual and so we shall
prove that Qo (E)’ = ®(E’). Tt is easy to show that for g ¢ $(E"),f— [ < f,
g > dm is a continuous linear functional on Qy(£). It remains to show that
any ¢ € % (F)’ is so represented. As in [4, p. 96], there is a compact set K
such that ¢ (f) = ¢ (f|x). Thus we may consider ¢ as a member of the dual
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of Q(E) for the set K. Now Qx(E) = Qx &, E [6, p. 71] and so
¢e (Qx ®- E)'. Thus ¢ is a continuous bilinear functional on Q¢ X E. By
the Dunford-Pettis Theorem [2, p. 45] and [7, p. 544], there is a unique
g e ®x(E’) such that ¢ (f) = [ (f, g) dr for any feQx ® E. Since Qx ® E is
dense in Qx (F) and since we have shown that f — f(f, g) dm is a continuous
linear functional on Qo (%), we must have ¢ (f) = [ (f, g) dr for all f ¢ 2 (E). |

5. Extension of operations on Qy(F)

In spite of the fact that the elements of @ (£) are not all functions most of
the operations performed on the functions of Q(E) can be extended to all
of Q(&).

DrerintrioN. (1) Let g e Q(E’) be fixed. For a given compact set K
set g |x = bgowithb e Qand p’ o go < 1. The map f — (f, go) |x is, by Theorem
3.2, a well defined linear continuous map of € () into Q. It thus has a con-
tinuous extension from Q (%) into € which we denote {f, go)x . Set {f, g)x =
{, 99x-blx. Now {f, Or, |x.nx, = {f, ¢)x, |xnx, a.e. since these functions
agree when feQ(E). Thus there is a measurable function (f, g) such that
for any compact set K © Z, {f, 9) |x = {f, 9)x a.e. [4, p. 83, footnote].

(2) For peP, the map f — 60,0 f of Q(E) into Q(E,) = Q(E,) is con-
tinuous. We denote the continuous extension of this map by 6,°f. For
feQ(E), pofcannow be defined as p o 0,0 f.

(3) If aeL” then the map f — af on Q (%) is continuous. We denote
the continuous extension of this map by af. If B C Z is measurable and
feQ(E), f|z can now be defined as c(R)f.

Not only do the operations on the functions in Qo (£) extend to Q(E) but
most of the properties of these operations continue to hold.

Prorosition 5.1. (1) LetfeQ(E),ae, peP,and a o (F, E) measurable
function g e Q(F) be given. Suppose that pof < a and that ap® o g is defined
(i, p°(g(2)) % » when a(z) = 0). Then |{f, g)| < ap’og.

(2) If feQ(E) and g = bgoeQ(E') where beQ and p o go < 1, then
[, 9| < (ohbl.

B) The form {f, g) is bilinear.

(4) ForaeL” feQ(E), and g e Q(F),

a(f’ g> = <af7 g) = <f, ag>°

(5) The extension of the seminorm [z p o f dw on Qo (E) to Q(E) is | xpe fdm.
(6) The element of Q(E)’ represented by g e ® (E') is given by f — [ (f, g) dr
for any f e Q(E).
(7) For fi, fr¢Q(E) and peP,
pe(fi+fo) Spefi+pofe.

8) IfpeP,feQ(E),and aeL”, thenapof = po (af).
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Proof. We prove only (1) since the proofs of the other parts are simpler.
Set R = {2:9°(g(2)) = »}. Let a compact set K and ¢ > 0 be given.
By Proposition 3.1(3), there is a compact set K’ € K — R with
7((K — R) — K') < £and p’ o ¢ | continuous and so bounded by, say, M.
Now for f e Qo (E),

(*) [ e < @)@ 0g) e < Mpofle.

Thus the maps f — | (f, 9) ||z and f — (pof) (@ g) |x are continuous as
maps from Q(E) into ©. Since the positive cone of @ is closed (it is the
intersection of the weakly closed sets

{aeQ: [x adr > 0}

as K runs through the set of compact sets K in Z), the continuous extension of
these maps satisfies () for any f e Q(E). The result follows immediately. |

Lemma 5.2. Let g:Z — F be weakly measurable. Let a € and p e P be
given and suppose a(z) % 0 when p°(g(2)) = © (so ap’ o g is defined). Then:

@ [lalp*ogdr=Sup (| [Gg)dn|:feT(®) andpos< |al).

(2) Ifp°o g is finite a.e. and if for every f e A(E) with pof < | a| we have
[14, ¢l dr < o, then [|a|p’ogdr < o.

Proof. Consider any compact set K of positive measure such that g |x
is weakly continuous and p’o ¢ |x is continuous and finite. We claim that
(1) is valid if we only integrate over K. Suppose first that ¢ = ¢(K') where
K’ C K is compact and let ¢ > 0 be given. Fix 20 ¢ K’ and choose xoe U
such that

P’ (g(20)) < (@0, g(20)) + e@m(K))7.
Find a neighborhood (in K’) Ny of 2, such that

p'(9@) < (@0, 9@) + e@(®))™

for ze No. If we do this for each z e K’ we get an open covering of K’.
Let N1, - -+, N be a finite subcovering with 1, - -+, 2. the associated ele-
ments of U. Set R, = N, — U/S'N; and f = 2. my¢(R;)z;. Then
pof < ¢(K') = aand [xp'ogdr < [{f, g9ydr + e This establishes
the claim for ¢ = ¢(K’). It now follows when a is a simple function easily.
The claim is now justified by observing that both sides of (1) (integrating
over K) are continuous as functions of a € @ and that the simple functions
are dense in Q. Set
N =1{z:p"(g)) = =}

and assume for the moment that # (V) = 0. Using [1, p. 170] we can obtain
a sequence of disjoint compact sets (K,) of positive measure and disjoint
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from N such that #(Z — UK,) = 0, g |k, is weakly continuous, and p’ © ¢ |x,
is continuous. Let € > 0 be given. By the first part of the proof we can
find, for each n, an f, e ' (E) with Supp f» & K, such that pof, < |a| and

[ lalpegin< [ (ug)dnt e
Kn K,
Then

[lals'ogar = T [x lal 8°og ir

< Supa | i [ gy dr | + .
This establishes (1).
For (2),set f = X 1 fn. Then feA(E) and

[lalsegan < [1(0) 1dr + e

This proves (2).

Tt remains to prove (1) when 7 (N) > 0. In this case [|a|p’ogdr = »
so it is sufficient to show that given M > 0 thereisan feI'(E) withpof < a
such that | [ {f, g) dw | > M. Ttis not hard to find a compact set K C N of
positive measure and a & > 0 such that g | is weakly continuous and | a(z) | > &
on K. The construction of an feI'(¥) with the desirable properties now
proceeds as in the first part of the proof. J

Lemma 5.3. Suppose pe P, feQ(E), and beQ. Then:
(1) [pofloldr = Sup{| [{f, g)dr|:geT(F) and p’og < [b]}.

(2) If for every g e A(F) with pog < |b| we have [ |{f, g)|dr < =,
then [poflb|dr < .

Proof. First we claim that if K is a compact set of positive measure and
feT (&), then (1) is valid if we only integrate over K. The proof is similar
to that of the first part of Lemma 5.2. We now claim that if feQ (&) and
b |x is continuous then (1) is valid if we only integrate over K. This is so
since we now know (1) to be true for f e I' (F), since both sides of the equality
are continuous as functions of f e @ (#), and since I' (F) is dense in Q(¥) (for
I' () separates points of Q(E)’ = &(E’)). Now (1) and (2) follow as in
Lemma 5.2. |

6. Integrals of elements of Q(F) and Q(F)

For a relatively compact measurable set B and feQ(#) we define f rfdm
to be the element of the algebraic dual of F defined by

<fefd1r,y> = fR (fry) dr
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(cf. [2, p. 8]). Similarly, for g e & (F) we define [z g dr to be that element of
the algebraic dual of E defined by

<$,fkgd1r>= L(x,g,)dm

TreorEM 6.1. (1) If feQ(E), then [zfdr e B and

p(j;f dr) < j;pofdw.

@) If ge Q(F), [rgdm e B,

Proof. (1) IffeT () then straight from the definition we have fR fdreE.
Now for any feI'(F) and p e P, the inequality of (1) holds [2, p. 12]. Thus
the map from I' () into E given by f — f zf dm is continuous. Therefore it
has a continuous extension | z fdr, from @ (E) into £ (' (E) is dense in @ (E
since it separates points of Q(E) = &(E’)). Let feQ(E) and let
(fe) € T'(E) be a net such that f, — f. Then,

<7Rf dw> =1ima<f;fadvr,y> = limafR (fary) dm

- [ G an = <fRfd1r,y>

where the first equality follows from the fact that

f—+< f;fdw,y>

is continuous on @ (%) and the next to last from the fact that ¢(R)y e Q(E)’.
Thus

Lfdw= LfdreE.

The inequality of (1) was shown above on the dense subspace I'(E) of Q(F)
and so is valid on Q(F).

(2) Set g|z = bgo where b eQ and p"o gy < 1. Then for z e U,

<x,Lgd1r>

Thus [z g drr is bounded on a neighborhood in E and so is continuous. [

SfRIbldr< w.

Prorosirion 6.2. If feQ(E) and f xfdr = 0 for every compact set K,
then f = 0.

Proof. For a compact set K and p ¢ P, set
QK,p) = {geT(F):p'og < c(K)}.
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Now

Q(K, p)°

[f € Q)2 Sup wawr | [ G 09 dm | < 1)

{f e QB): profdvr < 1)

since by Lemma 5.3,

Suppace | [ 0y dr | = [ pogan
Then
T(F)" = (Ug, QK, p))°
= nK'P Q(K) p)o
= nx,p{feQ(E) : f pofdr < 1}
= {0}

since the last expression is the intersection of sets forming a base of neighbor-
hoods in @(£). Thus given an f 5 0 in (%) there is a g e I'(F) such that
[{f, gydr % 0. The result now follows easily. ||

If Z is second countable we can do even better than the above result.

CoROLLARY 6.3. If Z 4s second countable, there is a countable collection
% = {Ka.} of compact sets such that if feQ(E) and [x,fdr = O for all n,
then f = 0.

Proof. Suppose {O.} is a countable base of open sets. By [1, p. 154],
each O; can be expressed as a union: O; = Uj.; L;; u N; where L;; is compact
and 7 (V;) = 0. Let X be the set of finite unions of the L;;. Nowletf = 0
in Q(F) be given and by the proposition choose a compact K and a y ¢ F so
that [« (f, y)dmr % 0. By the regularity of the measure we may choose an
open set O D K so that [o(f, y)dr ¥ 0 and then by the construction of %
choose a K’ e X so that [x (f, y)dr = 0.

7. A Radon-Nikodym theorem

A wvector valued Kdithe function space (v.f.s.) will be a subspace S(E) of
Q(E) containing T (¥) or a subspace T'(F) of & (F) containing T' (F).

Aset A © Q(F) is said to be solid if for every f e Aand a ¢ L® with || a || < 1,
af e A. The solid hull of a set A C Q(F) is the smallest solid solid set con-
taining A. A topology on a v.f.s. S(#) will be called solid if it has a base at
the origin of solid sets. Similar definitions apply to subsets of & (F).

The following is a theorem of the Radon-Nikodym type in that it produces a
function from rather simple properties.

TaeoreMm 7.1. Let S(E) be a solid v.f.s. and ¢ a linear functional on 4t.
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Then there is a g e Q(E') such that ¢ (f) = [ {f, g) dr is equivalent to the fol-
lowing:

1) ffeSE)andif BRi & R: C -+ - is a sequence of measurable sets such
that UR; = R (we write R; T R), then ¢ (f|z;) — ¢ (f|z), and

(2) for every compact set K C Z, there is a p e P such that the set

{0(f):feS(E) andpeof < c(K)}
18 bounded.
Proof. (=) (1) follows from the dominated convergence theorem. To

see (2), let K be given and write g |x = bgo with b eQ and p°o gy < 1. Then
ifpef < c(K),

| ¢(f) | =}f(f,g)d1r SleIdw< ©.

(¢=) The proof is long and is divided into several steps.
(a) For a fixed relatively compact measurable set R, the linear functional
m(R) on E defined by
d(c®)x) = (v, m(R))
is, by (2), in E".
(b) Let a compact set K & Z be given and let p € P be associated with K
by (2). For any measurable set B © K define

[m|e(R) = Sup |2 :(@w:, m(Ry))|

where the supremum is taken over all countable partitions {R;} of R and
p(x;) < 1. By an appropriate choice of a; we have

Zi,(xiy m(R;))| = Ziai<xia m(R;)) = Zi¢(aiC(Ri)xi)
= liMpsew ZLl ¢ (a:c(R;)x:)

which is finite by (2). Thus |m|gx(R) < . We now show that [ m |x is
countably additive. First note that

|m|x(R) = Sup 22| @:, m(R)) .

Let R € K be measurable and (R;) be a sequence of disjoint measurable sets
whose union is . Then

2oilmlx@®:) = 22i8up { 2o5] (wyy, m(Ri))| i p(xi;) £ 1, Ry © Ry}
< |mlx (R).
To see the reverse inequality, let & > 0 be given and let {S;} and {z;} satisfy
|mle@®) < | 25, m(S;) | + 6.
We have
@, m(8;)) = ¢(c(Si)z;) = limnswd(2i=1 ¢(Ri 0 S;)a;)

2o (xi, m(Rin S;))
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where the middle equality follows from (1). Thus
|mlx(®R) < | 225¢@i,m (S48 =24 @;,m(RinS,)) | + 8
< 2oilmle(B:) + 8.

Since 8 is arbitrary, | m |¢ is countably additive.

Note that | m | is absolutely continuous with respect tow. By the classical
Radon-Nikodym theorem, there is a m-measurable function bg(2) such that
|m|x(R) = fR brdm. Setu = bgw. Forany simple functiona = > iaic(R:)
with R; € K and the R/s disjoint, define m(a) = Y ;a;m(R;). Give the
simple functions the L' norm (with respect to w on K), || - 1. Then

@, m@)| = | 2iakze, m(B))| < 2o aill(x, m(Ry)) |
<p) 2ilail|m|x®:) = p@)|al:.

Thus the map ¢ — m(a) is continuous into the weak topology o (', E).
We can thus extend m to a map from L'(x) which is the completion of the
w-simple functions. Furthermore, the inequality (*) shows that the image
under the extension of the unit ball of L' is contained in the weakly complete
set U°. By [2 p- 46] and [7, p. 544], there is a scalarly p-measurable function
gK K — U’ such that m(a) = fagx du. 1In particular, for ¢ = ¢(R) this
implies that

(*)

¢(c(R)x) = (z, m(R))
= (z, m(c(R)))

= <967 f ¢(R)gx du>
S = f (e(R)z, gx) du
= f (e(R)z, gx)bx dr

- f (e(R)z, gx) dr.

The function gx above is defined as bxgx where gx(2) = gx(z) whenever
br(2) # 0 and gx (z) = O otherwise. Then g; is scalarly m-measurable since
(z, g; (2)) is the quotient of the 7w-measurable functions (z, g} (2))bk(2) and
be(z) (here 0/0 = 0).

(¢) Now let K1 € K, C --- be a sequence of compact sets such that
K, € Koy and Us K, = Z. Define g: Z — E’ by glx, = gx, and
9 |x—k.—1 = 9x, Where the gg,; are constructed as in (b). Since every com-
pact set in Z is contained in some K; we have ge Q(E’). Furthermore,
it follows from (xx) that for fe I'(E), ¢ (f) = [ (f, g) dr.

(d) We now extend the representation of ¢ to a larger class of functions.
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Let fe S(E). Given a compact set K, let p ¢ P be associated with it by (2).
Let K’ € K be such that p’(g(2)) | < M and 6,0 f |x is continuous (into
the Banach space E,). We claim that ¢ (f|x) = [{f|x, g)dm. By [1, p.
181], there is a sequence (f,) € T'(E) with Supp f. < K’ such that
pe (flxr — fa) — O uniformly. We know from (c¢) that ¢ (f,) = f(fn , §)dm.
Now

[ Gl yir = [ (g dn

Choose a sequence ¢, — « such that po (¢, (f |z — f»)) < 1. By (2), the set
{olalfler —fu))in=1,2,--+}

s bounded and so ¢ (f,) — ¢ (f |x*) which establishes the claim.

(e) Wenow extend the representation to any f e S (&) satisfying {f, g) = 0.
Let a compact set K be given. Let p be associated with K by (2). Sincef,o f
is measurable, we may for each 7 find a compact set K, € K such that
K, C Ku,m(K — K,) <1/n,0,0 f|x,is continuous, and p° © ¢ | x, is bounded.

By @), #(flx) = J(flx., 9pdr. By (1), 6(flx) — ¢(lx). By the

monotone convergence theorem,

[ Gy an— [ (1x, 09 an

Thus ¢ (f|x) = | {flx, g)dr. Now we assert that ¢ (f) = [ (f, g)dmw. If
Z is compact we have already shown this. If Z is not compact, let
Ki C K, C --- be a sequence of compact sets such that U51 K, = Z. By

the above,
¢(f|Kn) = f(flx,,, g>d7r.
By (1), #(flx,) — ¢(f). By the monotone convergence theorem,
f (fxn,> g) dm — f {f, g) dm.

(e) We now extend the representation to any feS(#). For feS(E),
set

<[ pelle = fM ar 0.

=10/ plf  (here 0/0 = 0).

We have (f', g) > 0 and so by (d), ¢ (f)) = [(f, g)dr. But(f, ¢) = |[{f, 9)|
and so [ [(f, g) | dr < . With this established we can repeat the arguments
of (d), using the dominated convergence theorem to get ¢ (f) = f(f, g) dr.
This completes the proof. J

We now state a version of the above theorem in the language of vector
valued measures. We only indicate the proof since we shall not use the result
in what follows.

COROLLARY 7.2. Let m be a function defined on the relatively compact measur-
able sets in Z and taking values in E’'. Then there is a g e Q(E') such that
m(R) = [z g dm is equivalent to the following:
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(1) for every x ¢ E, {x, m (- )) is countably additive on the o-ring of relatively
compact measurable sets,

@) nrR) =0, then m(R) = 0, and

) for every compact set K, there is a p € P such that

Sup {2-:p"(m(R:))} < o

where the supremum 1s taken over all countable partitions {R;} of K consisting of
measurable sets.

Proof. If f = D tac(R)z;eT'(H) with the R/s disjoint, define
&(f) = Dia(x;, m(R;)). The result can now be deduced from Theorem
7.1. (T (E) is not solid and so Theorem 7.1 does not apply, but an inspection
of the proof will show that it is valid for I'(%).) |

Remark. Gregory [5] gives several examples which show that various hy-
potheses of various theorems in the present series of papers cannot be dropped
even in the case that Z is the set of natural numbers and 7 is the counting
measure.
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