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BY
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This paper is a continuation of [8] and [9].

1. Compactness
We begin with a general situation. The results obtained will yield informa-

tion about compact sets in v.f.s.’s.
Let X and a family {Y a e A} be Hausdorff topological spaces and let
X --. Y be continuous maps. We suppose that ($) (x) for

each a implies z x. Define Y and :X -* Y by (x)
{(x)}. Then is continuous and one to one. A set S

_
X is said to be

projec$ivvly cornpac if (S) is compact for each a. A sequence (x) X is
projectively convergent if a(z) is convergent for each a. Other terms are
defined similarly.
The proofs of the following propositions present no difficulties; the proof of

Proposition 1.1 uses Tychonoff’s theorem and that of Proposition 1.3(2) uses
the finite intersection property characterization of compactness (see [6]).

PROPOSITION 1.1 A se$ S X is compact if and only if
(1) S is projectively compact, and
(2) every projectively convergent net in S is convergent to a point in S.

PROPOSXTO 1.2. Suppose A is countable. Then a set S X is sequentially
compact (respectively relatively sequentially compact) if and only if

(1) S is projec$ively sequentially compact (respectively relatively sequentially
compact), and

(2) every projec$ively convergen sequence in S is convergent to a point in S
(respectively convergent).

PROPOSTO 1.3. Suppose A; is countable. Then"
(1) If in Y, the compact (respectively relatively compact) sets are sequentially

compact (respectively relatively sequentially compact), then he same is $rue in X.
(2) If in Y the sequentially compact sets are compact, then the same is true

in X.
(3) If inY,, the countably compact sets are compact, then the same is true in X.
(4) If in Y the countably compact (respectively relatively countably con-

pact) sets are sequentially compact (respectively relatively sequentially compact),
then the same is true in X.

We now make some applications of the above three propositions.

THEORE 1.4. If E is rnerizable and S(E) is a v.f.s, with a topology finer
than the weak topology inducedfrom (E) then the compact, sequentially compact,
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and countably compact sets in S(E) are the same. Furthermore, a set A

_
S(E)

is compact iff it is weakly compact in (E) and every sequence in A which con-
verges weakly in (E) converges in S(E).

Proof. This is a simple application of Propositions 1.1-1.3 to the single
continuous injection map i S(E) (E), using the fact that in the weak
topology of a Frchet space the compact, countably compact, and sequentially
compact sets are the same [7, p. 318]. |

We omit the similar proof of the following result.

THEOREM 1.5. If E is metrizable and S(E) is a v.f.s, with a topology finer
than that induced from (E), then a set A

_
S(E) is compact iff it is compact

in (E) and every sequence in A which converges in (E) also converges in S(E).

Let S(E) be a v.f.s, such that for every compact set K Z, the map
f -* fKfd of S(E) into/ is continuous. (Here/ does not have to have
its original topology.) If Z is second countable, so that a countable number
of integrals suffice to determine f [8, Corollary 6.3] we could apply Proposi-
tions 1.1-1.3 to obtain information about the compact sets in S(E). We
omit the details.
In order to apply Theorerns 1.4 and 1.5, it is necessary to identify the com-

pact and weakly compact sets in 2(E). We do this, for special cases, in the
results to follow.

PROPOSITION 1.6. Let Z be a locally compact Abelian group with Haar
measure -. Suppose E is a Fr$chet space. Then a set C (E) is relatively
compact if and only if

(1) for every compact set K c_ Z and a e L, the set

{/r:afdTr "f .C}
is relatively compact in E, and

(2) given a compact set K Z, a p P, and an > O, there is a symmetric
neighborhood W of 0 (in Z) such that if zo W and f C, then

p((z)
f(z zo))d < .

Proof. Since E is a Frchet space, all elements of t2(E) are functions from
Z into E [8, Section 3].
() (1) follows from [8, Theorem 6.1(1) ]. We prove (2) in stages.
(a) Suppose C {f}, a single function and

f ’-i c(R)x r(E).

Using [4, p. 269], choose a symmetric compact neighborhood W such that for
zoeW

c(R )(z Zo) <_ e(np(x)dr
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Then forz0WlnWn...nWn,

fp(/(z) ](z zo) ) d

(b) Now suppose C {f} where f is ny function in (E). Let W be
ny symmetric compact neighborhood of 0. Then K + W, the ge of
K X W under the map (z, w) z + w, is compact. Since r(E) is dee in
(E) (it separates pots of (E) (E’) there is n’ e r(E) such that

By (a), we can find a syetric compact neighborhood W of 0 such that if
z W, then

f n(/’(z) -/’(z zo) )d .
Then for zo W a W

+ f (/’(z z) (z d

E 2s + f (]’(z) -](z)) d

< 3e.

(c) Suppose C {f}, finite set. The existence of W this cse
follows easily from (b).

(d) Finally, suppose C relatively compact. Then C precompct.
Let W, be ny syetric compact neighborhood of 0. Since K + W is
compact, the set

V

is a neighborhood in t(E). Let {fj} be a finite set in 2(E) such that C

___
[J(f. + V). Let W be the neighborhood for {fj} guaranteed by (c). Let
jr e C be arbitrary and choose j’ so that if f’ V. Then for z0

p(l(z) ](z z) )4 </,: pff(z) I,(z) )d

" fK p(f,(z) fj,(z zo) )dr

+ fK p(f,(z zo) f(z z.))d"

< 3.
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() Let K, p, and e > 0 be given. We shall show that C can be covered
by a finite number of translates of the set

{/ U(E) .J p o/d < 2e}.

Thus C will be precompact and so relatively compact. Pick a symmetric
compact neighborhood W by (2). Let r(z) be a continuous non-negative,
real-valued function such that Supp r

_
W and fr d 1. Set M Sup

r(z). ForfeCset

ff(z w)r(w)dr(w).f*(z)

(This is sort of a convolution.) Thenf* (z) e E. Also, for z0 fixed and p0 e P,

f(zo / z)) no If(f(zo w) ](zo /z w))r(w)dr(w)1po(f*(zo)

<_ fpo[(f(zo w) -f(zo - z w) )r(w)]dr(w)

<_ M fwpo($(zo w) $(zo -I- z vo) )d(w)

M/,+,, p(f(-w) ](z w))dr(w)

i f po(f(w) f(w z) dr(w)
W--zO

which by (2) can be made arbitrarily small, uniformly for f e C, for z in a
sufficiently small neighborhood of 0. Thus J* is continuous and in fact the
set C* {f* f e C} is equicontinuous.

If we let (E) be the set of all continuous functions from Z into E equipped
with the topology of uniform convergence on compact sets, we have shown
hat C*

_
(E) and is equicontinuous. For z0 fixed,

f*(zo) ff(zo- w)r(w)dr fvf(zo w)r(w)dr

f f(- w)r(w zo)dv f_ f(w)r(zo w)dv.
o+W zo--W

Thus by (1), {f*(zo):f C*} is relatively compact in E. By Ascoli’s
Theorem [6, p. 233], C* is relatively compact in (E) and so is relatively
compact in the weaker topology of 2(E). Thus C* can be covered by a finite
number of translates of
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But

f, p(f f*)dr f, p(f(z) Ifz f(z- w)r(w)dr(w)l dr(w)dr(z)

f.p [f(z)r(w)--f(z-- w)r(w)]&r(w))&r(z)
<_ f L r(w)p(f(z) f(z w) )&r(w)&r(z)

fs r(w)f p(f(z)- f(z- w) )dr(z)&r(w)

f,,r(w) f,p(f(z)- f(z- w))&r(z)&r(w)

by the choice of W and r. The last inequality together with (.) show that C
can be covered as claimed. (A proof of the p-measurability off(z w) which
allows the use of Fubini’s Theorem above is similar to the proof of the anal-
ogous result for real valued functions found in [3, p. 634].) |

Remark. The only reason for restricting E to be a Frchet space in the
proposition is that expressions such as f(z zo) and f(z w) used in the
proof are then defined since the elements of f(E) are functions. If the
definition of these expressions is extended to all of f(E) and certain relation-
ships between these extensions are shown (c.f. [8, Proposition 5.1]), then the
proposition can be proved for a general E.

PROPOSITION 1.7. If E is a separable reflexive Banach space then the fol-
lowing statements about a set C 2(E) are equivalent:

(1) C is weakly relatively compact.
(2) For every g (E’), the set (C, g) is weakly relatively compact in .
(3) For every g (E’), compact set K, and e > O, (C, g) is bounded in

and there is a > 0 such that if R

_
K is measurable and r(R) ( , and ] C,

then f (.f, g) dr < .
Proof. (2) = (3) is just the characterization of the weakly relatively

compact sets in f given in [2, p. 98].
(1) (2). The map T" (E) -- f given by Tf (f, g) has an adjoint

T* -- (E’) given by T*b bg and so is weakly continuous. The result
follows.

(3) (1) is more difficult. Since (C, g) is bounded for every g e (E’) we
have that f (C, g)d" is bounded for every g (E’). and so C is bounded in
2(E). Let G be the strong dual of (E’) and let C be the closure of C in G
under the weak topology induced from (E’). Now is compact in this weak
topology since it is contained in the bipolar of C which is the polar
of a ((E’), f(E) neighborhood. Let e . We now apply [8, Theorem
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7.1] (with E and E’ switched; see [9, Proposition 1.1]) to show that o e 2(E),
thus completing the proof. If r does not have compact support then by [9,
Proposition 2.5], (E’) is, under the strong topology, the strict inductive limit
of spaces :,,(E’). Thus for any compact set K, the set

D {g e(E’) llgll - c(K)},
which is contained in and bounded in some :,,(E’) is strongly bounded in
(E’) [10, p. 129]. If r has compact support, [9, Proposition 2.5] again shows
that D is bounded. Thus , which is strongly continuous, is bounded on D.
This gives condition (2) of [8, Theorem 7.1]. For condition (1) let (fa)

_
C

be a net such that fa --. weakly. Fix g (E’) with Supp g K, a compact
set. SupposeR " RandsetS R- R. Then

as j-. o by (3). |

2. The spaces h(E) and 2:(E’)
If h is a solid scalar v.f.s. (e.g. L) we set

A(E) {fel2(E) "pofeA for allpeP}
and

A(E’) {g e (E’) g bgo with b e h and p(go(z)) <_ 1
a.e. for some p e P}

Since p0 o g is not necessarily well defined for g e fi(Et) [8, example following
Theorem 3.2], the definition of h(E’) is not complete. We shall make the
agreement, here and in similar cases later, that the representation for g need
only hold for one function in the class. If E is separable, then po g is well
defined [8, Theorem 3.1] and so in this case we have

A(E’) {ge(E’) :pogeAforsomepeP}.
Using the remarks following [9, Proposition 1.1] it is easy to show that if

E is a Banach space and E is separable, then (E) A(E’) and if E is a
reflexive Banach space then h(E) can be identified with A(Et).

Besides the L spaces, examples of scalar v.f.s.’s include the Orlicz spaces
[12] and general Banach function spaces [13]. Spaces of the form A(E) have
been studied by Gregory [5] when Z is the set of natural numbers and r is the
counting measure. Cttc [1] has studied the spaces A(E) when E is a Banach
space.

If (/t, 2) is a dual pair of solid v.f.s.’s and f e It(E) and g e (E), set
g bgowherebeZandp(go(z))

_
1. Then

Thus (A(E), Y,(E’)) is a dual pair of v.f.s.’s. We shall find that the dual
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pair (A(E), 2(E’) inherits many of the properties of the dual pair ( A, 2),
especially when E is normed.

If A has a solid topology, we topologize A(E) with the set of seminorms
[q(p of)} where p P and q is the gauge of a solid absolutely convex neighbor-
hood in A. It is easy to show that the seminorms q(p o f) are seminorms and
generate a solid topology on A(E).

PROPOPOSITION 2.1. (1) A*(E) A(E’)*.
(2) If E is a separable normed space, A(E)* A*(E’).
Proof. (1) If if e ](E), p P, and b e A, we have by [8, Lemma 5.3],

fpflbldr
Sup ](f,g) ld’g )withg= bgowherep g0_ 1

and both sides of the equality are finite if every entry in the supremum is
finite. Thus

A * J A *f e (E’) , I(f, g)[dr < oo for every g (E’)

fp o/Ibldr < oo for every p e P and b e A

A*f (E).

(2) This is proved as is (1) except that [8, Lemma 5.2] is used. |

Remark. Equality (2) is not true for general A and E. For let A 0.
Then (E)* (E’). But in general fa(E’) # (E’) unless E is normed or
Z is compact. See also Proposition 2.5.

PROPOSITION 2.2. Let A, Z) be a dual pair of solid v.f.s’s and let B

_
be

a solid set whose polar has gauge q. Then for any f A(E),

q(p of) Sup {I f(f, g)drl g e Z(E)
where g bgo with b e B and p(go(z) <_ 1}.

This implies that if a solid topology on A is a polar topology induced from
then the topology on A(E) is a polar topology induced from (E’).

Proof. The result is obtained by taking a supremum on both sides of the
equality (.) in the proof above, as b runs through all elements of B.
The identification of L(E) (1

_
p < ) when E is a separable Banach

space is well known [4]. The case of a general E has been studied in [11].
THEOREM 2.3 Let A, ) be a dual pair of solid scalar v.f.s.’s with A* .

Let A be given a solid polar topology from . Then

A’ : A(E)’ ZO(E,).
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Proof. () By [9, Thorem 3.5], if R T R and a A then ale, "-’* ale. An
easy calculation shows that if f A(E) then fiR, "-’* fiR. Now let e A(E).’
Then there is a p e P and a continuous seminorm q on h which is the gauge
of a solid set such that

(.) q(p of) <_ 1 l(f) <-- 1.

If K c__ Z is compact, the set {a e A lal < c(K)} is a(h, 2) bounded and
so bounded in A. Thus there is an M such that for any f A(E)
with p o f <_ c(K) we have q(p o f) <_ M. By (.), I(f) < M for any such f.
By [8, Theorem 7.1], there is a g e fi(E’) such that (f) f (f, g)dr. Fur-
thermore,:an inspection of the proof of that theorem shows that g bgo where
b e t2, b > 0, and p o go <_ 1 and that for any relatively compact measurable
set R,

Sup {(c(R,) x,)}

where the supremum is taken over all countable partitions {R} of R and x
satisfies p(x) _< 1 and O(c(Rn)x)

_
0. Now let a h with a

_
0 be fixed.

Let a’ a c(R) be a simple function satisfying 0 _< a’ <_ a. Then

fa’b ,a, fa b dr ", a Sup { (c(R,)x,j)

Sup { (,a,c(R,)x,)} <_ q(pof)

by (,), using the fact that q is the gauge of a solid set. By [8, Lemma 5.2 (1) ],
fabdr < and so b e 2; A* and thus g e 2f(E’).
We have shown that A(E)’ C..C_ 2(E’). The reverse inclusion is easy to

show.
() If h’ 2; then by [9, Theorem 3.5] there is an a e h and a sequence

R T R such that aiR, "’ air is false. Then if x .rs 0 in E, a(Z)XlR a(Z)XlR
is false in A(E). Since by Proposition 2.2, the topology on A(E) is a polar
topology induced from 2;(E’), [9, Proposition 3.3] implies hat

z(E’). I
Remark. Using the techniques of [1, Proposition 10] we may prove that
(E)’ 2;o (E,) when h has the normal topology even if A* 2.

THEOREM 2.4. Let ( A, 2;) be a dual pair of solid v.f.s.’s with A *. Let A
be given the topology of uniform convergence on a set of solid sets of whose union
is . Then A(E) is complete.

Proof. By Proposition 2.2, the topology on A(E) is a solid polar topology
induced from Z(E’). By Proposition 2.1, A(E) 2f(E’)*. Since the
topology on A is finer than that induced from t2, the topology on A(E) is finer
than that induced from (E). Thus [9, Theorem 2.2] A(E) is complete. |

We are now able to extend the equality of Proposition 2.1 (2) to a larger
class of spaces.
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PROPOSITION 2.5. Let E be a metrizable space. Let A, 2:) be a dual pair
of scalar v.f.s.’s with A* 2: and 2:* A and suppose that A is metrizable under
the topology r( A, 2:). Then A(E)* 2:(E).

Proof. Let A be given the topology r(A, 2:). This is a solid topology
[9, Corollary 3.6] and by Theorem 2.4, A(E) is complete. Since A and E are
metrizable, A(E) is metrisable and so barrelled. By [9, Proposition 3.1],
A(E)*

_
A(E) . But by Theorem 2.3, A(E) 2:(E) _C A(E)* and so

|

LEMMA 2.6. Let A, 2:) be a dual pair of solid scalar v.f.s.’s with A* 2:.
Then, (1) a set A c_ A(E) is

a(A(E), 2:(E’))
bounded ifffor every p e P, p(A) is ( A, ) bounded, and (2) if E is a separable
norned space, a set B Z(E) is

)

bounded iff IIBil is (2:, A) bounded.

Proof. (1) Let h be given the normal topology. By [9, Lemma 1.3].
h’ 2: and so by Theorem 2.3, I(E)’ 2:(E). Now A is bounded in
A(E) iff p(A) is bounded in A for every peP. But p(A) is bounded iff
p(A) is a( A, 2:) bounded and A is bounded iff it is a(A(E), ZO(E’) bounded.

(2) Let C be any solid a( A, 2:) bounded set. By [8, Lemma 5.2], for any
2:0a e A and g e (E’) we have

Thus

Sup{ f al I] g dr" a C and g B}

Sup f(f, g)dr a A(E), II f [I e C, and g e B}.

Using [9, Proposition 1.4], the left hand side of this equality is finite for every
C iff IIBII is (2:, A) bounded, while the right side, using part (1), is finite for
every C iff B is (2:0 (E’), A(E) bounded. |

COrOLLArY 2.7. Let A, Z) be a dual pair of solid v.f.s.’s with A* 2 and

* A. Let E be a separable normed space. Then (1) a set B

_
Z(E’) is

bounded iff IIBll is (r(Z, A) bounded, and (2) a set A

_
A(E) is

bounded iff IIAil is (A, 2:) bounded.
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Proof. (1) Let A be given the normal topology. By [9, Lemma 1.3],
A’ 2; and so by Theorem 2.3, A(E)’ (E’). By Theorem 2.4, A and
A(E) are complete. Thus [10, p. 72] the strongly and weakly bounded sets
in Z(E’) and 2; are the same and the results follows from Lemma 2.6 (2).

(2) The proof is similar to that of Lemma 2.6(2) and is omitted. |

PROPOSITIO 2.8. Let E be a separable normed space. Let ( A, 2;) be a dual
pair of solid scalar v.f.s.’s with A* 2; and 2;* A. Let A be given a solid
polar topology of the dual pair. Then A has the topology ( A, 2;) iff A(E) has
the topology A(E), o(E,) ).

Proof. By [9, Proposition 2.4] the polars of the solid weakly bounded sets
in 2; and 2;(E’) form a base for the topologies

(h, 2;) and (A(E), 2;(E’)).

The result follows from Proposition 2.2 and Corollary 2.7(1). |

COROLLARY 2.9. Let E be a separable normed space. Let A be a solid scalar
v.f.s, with A h** and let A be given a solid topology of the dual pair A, A*).
Then A is barrelled iff A(E) is barrelled.

Proof. By Theorem 2.3, A(E) has a topology of the dual pair

Since a space is barrelled iff it has the strong topology from its dual, the result
follows from the proposition. |

PROPOSITION 2.10. Let E be a reflexive separable Banach space. Let
(A, ) be a dual pair of solid scalar v.f.s.’s with A* 2; and 2;* A. Let 1
be given a topology of the dual pair. Then A is semirefiexive iff A(E) is semi-

reflexive.
Proof. By Theorem 2.3, A(E) has a topology of the dual pair

z(E’)).

Let 2; be given the topology (2;, A). Then (with E and E’ switched--see
[9, Proposition 1.1]) Proposition 2.8 shows that 2;(E’) has the topology
(2;(E’), A(E)) and so by Theorem 2.3, 2;(E’)’ A(E) iff 2;’ A, i.e.,
A(E) is semi-reflexive iff A is semireflexive.

PROPOSITION 2.11. Let E be a separable reflexive Banach space. Let A be
a solid scalar v.f.s, with A A** and let A be given a topology of the dual pair
A, A*). Then A is reflexive iff A(E) is reflexive.

Proof. Since a locally convex space is reflexive iff it is barrelled and semi-
reflexive [7, p. 302], the proposition follows from Corollary 2.9 and Proposition
2.10. |
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3. The Spaces L(E)
We give a list of some properties of the spaces L"(E). Let q be the con-

jugate index to p.

(a) L"(E) is complete (Theorem 2.4).
(b) The topology on L(E) is a polar topology induced

from (Lq) (E’) (Proposition 2.2).
(Lq) (E’)* L(E) (Proposition 2.1).
If E is metrizable and 1 <_ p < oo, L’(E)* (Lq) (E’) (Proposition

(c)
(d)

2.5).
(e)

2.).
(f)
(g)
(h)

If E is separable and normed, L’(E) * (L1)(E’) (Proposition

If 1 _< p < oo, L(E)’= (L)(E’) (Theorem 2.3).
If L’ L1, then L’O(F)’ (L)(E’) (Theorem 2.3).
If E is a reflexive separable Banach space, L"(E) is weakly sequen-

tially complete (with respect to the dual pair (L(E), (L) (E’) [9, Theorem
2.7].

(i) if E is normed and 1 _< p <: oo, then (Lq) (E’) is quasicomplete when
given the topology of uniform convergence on the compact sets of L"(E) [9,
Proposition 3.7].
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