Geometry without algebra is dumb! - Algebra without geometry is blind!
- David Hestenes

The principal argument for the adoption of geometric algebra is that it provides a single, simple mathematical framework which eliminates the plethora of diverse mathematical descriptions and techniques it would otherwise be necessary to learn.
- Allan McRobie and Joan Lasenby
To David Hestenes,
founder, chief theoretician, and most forceful advocate
for modern geometric algebra and calculus,
and inspiration for this book.

To my Grandchildren,
Aida, Pablo, Miles, and Graham.
Contents

I Linear Algebra

1 Vectors 3
 1.1 Oriented Lengths ... 3
 1.2 \mathbb{R}^n .. 12

2 Vector Spaces 15
 2.1 Vector Spaces .. 15
 2.2 Subspaces ... 20
 2.3 Linear Combinations .. 22
 2.4 Linear Independence .. 24
 2.5 Bases .. 27
 2.6 Dimension ... 30

3 Matrices 33
 3.1 Matrices .. 33
 3.2 Systems of Linear Equations 45

4 Inner Product Spaces 51
 4.1 Oriented Lengths .. 51
 4.2 \mathbb{R}^n ... 56
 4.3 Inner Product Spaces .. 57
 4.4 Orthogonality .. 63
II Geometric Algebra

5 \(\mathbb{G}^3 \)
 5.1 Oriented Areas ... 73
 5.2 Oriented Solids ... 79
 5.3 \(\mathbb{G}^3 \) ... 81
 5.4 Complex Numbers ... 84
 5.5 Rotations in \(\mathbb{R}^3 \) 89

6 \(\mathbb{G}^n \)
 6.1 \(\mathbb{G}^n \) ... 93
 6.2 The Norm .. 98
 6.3 Inner and Outer Products 100
 6.4 How Geometric Algebra Works 104
 6.5 Pseudoscalars .. 107
 6.6 Product Properties ... 113

7 Project, Rotate, Reflect .. 119
 7.1 Project .. 119
 7.2 Rotate .. 124
 7.3 Reflect .. 126

III Linear Transformations 131

8 Linear Transformations .. 133
 8.1 Linear Transformations 133
 8.2 The Adjoint Transformation 142
 8.3 Outermorphisms .. 146
 8.4 The Determinant .. 149

9 Representations .. 151
 9.1 Matrix Representations 151
 9.2 Eigenvalues and Eigenvectors 158
 9.3 Invariant Subspaces ... 164
 9.4 Symmetric Transformations 167
 9.5 Orthogonal Transformations 171
 9.6 Skew Transformations 175
 9.7 Singular Value Decomposition 179

10 The Conformal Model .. 185
 10.1 The Geometric Algebra \(\mathbb{G}^{r,s} \) 185
 10.2 The Conformal Model 186
 10.3 Dual Representations 187
 10.4 Direct Representations 188
 10.5 Transformations of Points 189
 10.6 Covariance .. 191
 10.7 Intersections ... 194
Preface

Linear algebra is part of the standard undergraduate mathematics curriculum because it is of central importance in pure and applied mathematics. It was not always so. The wide acceptance of vector methods did not occur until early in the twentieth century. The pioneers were two physicists: the American Josiah Willard Gibbs and the Englishman Oliver Heaviside, beginning in the late 1870’s. Linear algebra allows easy algebraic manipulation of vectors. But it is not the latest word on the algebraic manipulation of geometric objects.

Geometric algebra is an extension of linear algebra pioneered by the American physicist David Hestenes in the 1960’s. Geometric algebra and its extension to geometric calculus unify, simplify, and generalize vast areas of mathematics, including linear algebra, vector calculus, exterior algebra and calculus, tensor algebra and calculus, quaternions, real analysis, complex analysis, and euclidean, noneuclidean, and projective geometries. They provide a common mathematical language for many areas of physics (classical and quantum mechanics, electrodynamics, special and general relativity), computer science (graphics, robotics, computer vision), engineering, and other fields.¹

Just as linear algebra algebraically manipulates one dimensional objects (vectors) in a coordinate-free manner, geometric algebra algebraically manipulates higher dimensional objects (multivectors) in a coordinate-free manner. Even within linear algebra, many topics are improved by using geometric algebra. The material in this book subsumes, unifies, and generalizes the vector, complex, quaternion (spinor), exterior (Grassmann), and tensor algebras.

I believe that the time has come to incorporate some geometric algebra in the introductory linear algebra course. This book provides a text for such a course. Single variable calculus is not a prerequisite. But for most students a mathematical maturity equivalent to that gained in such a course probably is.

My A Survey of Geometric Algebra and Geometric Calculus provides an introduction for someone who already knows linear algebra. It contains a guide to further reading, online and off. It is available at the book’s webpage.
Part I of this book is standard linear algebra. Part II introduces geometric algebra. Part III covers linear transformations and their geometric algebra extensions, called outermorphisms.

A majority of the topics in the traditional linear algebra course is treated. The major exception is algorithms. For example, the algorithm for inverting a matrix is not covered. The concept and applications of the inverse are important. They are used in many places in this book. But the algorithm to compute the inverse teaches little about the concept or its applications. Similar remarks apply to algorithms for row reduction, solving systems of linear equations, evaluating determinants, computing eigenvalues and eigenvectors, etc.

To me, the benefit/cost ratio of including the algorithms is too low. I do not need them for the theoretical development. No one applies them by hand anymore—except for exercises in linear algebra textbooks! They take up a substantial fraction of the standard syllabus, time that can be better spent on other topics. Why teach them in an elementary linear algebra course?

Some exercises and problems in the text require the use of the free multiplatform Python module $\mathcal{G}A$gebra. It is based on the Python symbolic computer algebra library SymPy (Symbolic Python). The file $\mathcal{G}A$ebraPrimer.pdf at the book’s web site describes the installation and use of the module.

The book covers matrix arithmetic, the application of matrices to systems of linear equations, the matrix representation of linear transformations, the matrix version of the singular value decomposition, and several matrix applications. However, matrices play a smaller role than in most texts. A major reason is that matrices are used in the omitted algorithms. Also, geometric algebra often replaces matrices with better alternatives. For example, the geometric algebra definition of a determinant is intuitive and simple and does not involve matrices. And geometric algebra provides better representations than matrices for important classes of linear transformations, as shown in the text for projections, rotations, reflections, and orthogonal and skew transformations.

There are over 200 exercises interspersed with the text. They are designed to test understanding of and/or give simple practice with a concept just introduced. My intent is that students attempt them while reading the text. Then they immediately confront the concept and get feedback on their understanding. There are over 300 more challenging problems at the end of most sections.

The exercises replace the “worked examples” common in most mathematical texts, which serve as “templates” for problems assigned to students. We teachers know that students often do not read the text. Instead, they solve assigned problems by looking for the closest template in the text, often without much understanding. My intent is that success with the exercises requires engaging the text.

Everyone has their own teaching style, so I would ordinarily not make suggestions about this. However, I believe that the unusual structure of this text (exercises instead of worked examples), requires an unusual approach to teaching from it. I have placed some thoughts about this in the file “LAGA Instructor.pdf” at the book’s web site. Take it for what it is worth.
There is plenty of material here for a one semester course. The actual text is only about 190 pages, rather short for a linear algebra text, much less for one incorporating geometric algebra. One reason is that I have tried to avoid the “bloated textbook syndrome”. Another is that the exercises mean that a reader will spend more time per page than is usual in an elementary mathematics text.

An instructor should be wary of adopting a nonstandard text such as this for a course as fundamental as linear algebra. It might allay worries about this to know that this book can be used as a linear algebra text, without geometric algebra. Chapters 1-4 and Sections 8.1, 8.2, 9.1-9.4, and 9.7 use no geometric algebra. They cover the majority of topics in the traditional linear algebra course, with the exception of the aforementioned algorithms and determinants. Thus an instructor can include geometric algebra as time permits, or teach a two track course, with some students studying geometric algebra and some not.

The first part of the index is a *symbol* index.

Please send corrections, typos, or any other comments about the book to me. I will post them on the book’s web site as appropriate.

Geometric calculus is a powerful extension of vector calculus, just as geometric algebra is a powerful extension of vector algebra. The divergence and Stokes’ theorems are special cases of a very general theorem relating derivatives to integrals. Also, complex variable theory extends to arbitrary (even and odd) dimensions. I have published a sequel to this book, *Vector and Geometric Calculus*. That book’s website is http://faculty.luther.edu/~macdonal/vagc/.

Acknowledgements. I thank Ian-Charles Coleman, Gabriel Demuth, Peeter Joot, Gez Keenan, Adem Semiz, Dr. Vijay Sonnad, Quirino M. Sugon Jr., and Ginanjar Utama for helpful comments. I thank Martin Barrett, Professor Philip Kuntz, James Murphy, Robert Rowley, and Professor John Synowiec for reading all/most of the text and providing extensive and helpful comments and advice.

I am especially grateful to Professor Leo Dorst for providing helpful expert commentary and to Allan Cortzen, who has improved this book in many ways, including providing better proofs of several theorems.

I also thank Alan Bromborsky, author of *GA* Algebra, for making changes which make it more useful to readers of this book.

Finally, thanks to Professor Kate Martinson for help with the cover design.

Second Printing

This second printing has no major changes. It corrects all errors known to me in the first printing. I have added answers to selected problems having numerical answers. There are many improvements in wording. The numbering of equations, theorems, etc. is unchanged from the first printing.

I thank George Craig, who asked several penetrating questions which have improved the exposition.

\(^2\)Except for the definition of determinants (p. 155). Note however that determinants are not a prerequisite for anything important in the book. In particular, they are not used in the discussion of eigenvalues.
Third Printing

This third printing has no major changes. It corrects all errors known to me in the second printing. There are many improvements in wording. The numbering of equations, theorems, etc. remains unchanged from the first printing.

Fourth Printing

This fourth printing corrects all errors known to me in the third printing. There are many minor improvements. Chapter 6 has been rearranged considerably and thereby improved. Consequently, the numbering of theorems, exercises, etc in the chapter have changed, as have references in other chapters to it.

I have removed the old Appendix B, Software, which documented Alan Bromborsky’s Python module $\mathcal{G}\text{Algebra}$. The documentation there became out of date as the module improved. It is now in the file $\text{GAlgebraPrimer.pdf}$.

A new Chapter 10 is devoted to the increasingly important \textit{conformal model} of geometric algebra. I have written a Jupyter notebook cm3.ipynb based on $\mathcal{G}\text{Algebra}$ for making calculations in the 3D conformal model.

The current versions of $\text{GAlgebraPrimer.pdf}$ and cm3.ipynb are available at the book’s website and are bundled with the $\mathcal{G}\text{Algebra}$ distribution.

I give a special thanks to Gregory Grunberg, who has done much to improve this book, especially the new Chapter 10. The book is better for his efforts.

Fifth Printing

This fifth printing has no major changes. It corrects all errors known to me in the fourth printing. There are many improvements in presentation and a small amount of new material. The numbering of equations, theorems, etc. is unchanged from the fourth printing.

In general the position as regards all such new calculi is this - That one cannot accomplish by them anything that could not be accomplished without them. However, the advantage is that, provided such a calculus corresponds to the inmost nature of frequent needs, anyone who masters it thoroughly is able - without the unconscious inspiration of genius which no one can command - to solve the respective problems, indeed to solve them mechanically in complicated cases in which, without such aid, even genius becomes powerless. Such is the case with the invention of general algebra, with the differential calculus, Such conceptions unite, as it were, into an organic whole countless problems which otherwise would remain isolated and require for their separate solution more or less application of inventive genius. - C. F. Gauss
To the Student

Linear algebra is indispensable in many disciplines, including mathematics, statistics, physics, computer science, chemistry, biology, engineering, and economics. Linear algebra is more widely used than any other college level mathematics, with the possible exception of calculus. You can see yourself that it is widely used: whenever a new concept is introduced in the text, Google it. You will find tons of links.

Most of the mathematics taught in single variable calculus courses has been known for 250 years. But mathematics is not a fixed body of knowledge, unchanged for hundreds of years. You are used to the fact that technology advances year by year. Mathematics also advances, though not as rapidly.

Linear algebra as we know it today is the result of a vast undertaking of abstraction, over centuries, unifying common aspects of many problems in many areas of mathematics and its applications. Do not translate “abstract” as “of no practical value”: abstraction gives linear algebra much of its practical power. I hope that you will appreciate this by the time you finish the book.

The central theoretical importance of linear algebra started to be recognized early in the twentieth century. A sophomore linear algebra course has been part of the standard mathematics curriculum only since the early 1970’s. The recent availability of cheap powerful computers has made it possible to solve more practical applications of linear algebra, causing an explosion of its use.

Geometric algebra as practiced today originated in the 1960’s. It is currently under vigorous development. It has found important applications in computer science (in graphics, robotics, and computer vision), engineering, and physics. It is available to game developers for the Xbox and PlayStation video game consoles. This text is an attempt to keep up with these modern developments.

Most students find linear algebra hard, even many who have done well in previous mathematics courses. There are several reasons for this:

- Linear algebra has little connection to earlier courses. For example, this text makes only occasional, nonessential, reference to calculus.
- The large number of definitions and theorems can be overwhelming.
- Reasoning dominates calculation in linear algebra. The reasoning requires what has been called “a mathematical frame of mind”. This is a new way of thinking, difficult to describe to those who have not acquired it.
How should you cope with these difficulties? Research clearly shows that *actively* engaging course material improves learning and retention. Here are some ways to actively engage the material in this book:

- **Read** Study the text. This may not be your habit, but many parts of this book require reading and rereading and rereading again later before you will understand.

- Instructors in your previous mathematics courses have probably urged you to try to *understand*, rather than simply memorize. That advice is especially appropriate for this text.

- Many statements in the text require some thinking on your part to understand. Take the time to do this instead of simply moving on. Sometimes this involves a small computation, so have paper and pencil on hand.

- Definitions are important. Take the time to understand them. You cannot know a foreign language if you do not know the meaning of its words. So too with mathematics. You cannot know an area of mathematics if you do not know the meaning of its defined concepts.

- Theorems are important. Take the time to understand them. If you do not understand what a theorem says, then you cannot understand its applications.

- Exercises are important. Attempt them as you encounter them in the text. They are designed to test your understanding of what you have just read. Do not expect to solve them all. Even if you cannot solve an exercise you have learned something: you have something to learn!

 The exercises require you to think about what you have just read, think more, perhaps, than you are used to when reading a mathematics text. This is part of my attempt to help you start to acquire that “mathematical frame of mind”.

 Write your solutions neatly in clear correct English.

- Proofs are important, but perhaps less so than the above. On a first reading, don’t get bogged down in a difficult proof. On the other hand, one goal of this course is for you to learn to read and construct mathematical proofs better. So go back to those difficult proofs later and try to understand them.

- Take the above points seriously!

Appendix A, *Prerequisites*, describes the mathematical background necessary to read this text. You might want to look it over now, to make sure that you are ready.

Some exercises and problems in the text require calculations unfeasible to perform by hand. GalgebraPrimer.pdf, available at the book’s webpage, describes how to install and use the computer algebra system **G**Algebra for this. It is written in Python, a free multiplatform language.
Index

adjoint, 142
adjoint, 142
dual, 107
dual, 107
transpose, 41
transpose, 41

\(A^\dagger \), 98
\(A^\dagger \), 98
\(C[a, b] \), 26, 60
\(C[a, b] \), 135
\(C_1[a, b] \), 135
\(E \), 188
\(E \), 188
\(P_n \), 17
\(P_n \), 17
\([i][s \cdot b] \), 44
\([i][s \cdot b] \), 44
&, 198
\&, 198
\(G^3 \), 81
\(G^3 \), 81
\(G^n \), 93
\(G^n \), 93
\(I \), 84
\(I \), 84
\(L^3 \), 7
\(L^3 \), 7
\(R^3 \), 9
\(R^3 \), 9
\(R^n \), 12, 56
\(R^n \), 12, 56
\(R^{n,*} \), 185
\(R^{n,*} \), 185
\(U^\perp \), 66
\(U^\perp \), 66
\(f^\star \), 142
\(f^\star \), 142
\(\cap \), 197
\(\cap \), 197
\(\circ \), 202
\(\circ \), 202
×, 110
×, 110
∪, 197
∪, 197
e_{j}, 99
e_{j}, 99
e_{\pm}, 186
e_{\pm}, 186
e_{j}, 52
e_{j}, 52
\infty, 186
\infty, 186
i, 84
i, 84
⇔, 198
⇔, 198
∈, 197
∈, 197
• (inner product)
• (inner product)
\(G^n \), 100
\(G^n \), 100
\(R^n \), 56
\(R^n \), 56
inner product space, 57
inner product space, 57
oriented lengths, 51
oriented lengths, 51
\(\parallel \), 100
\(\parallel \), 100
\(\mathbb{M}_B \), 126
\(\mathbb{M}_B \), 126
\(P_B \), 120
\(P_B \), 120
\(P_u(v) \), 67
\(P_u(v) \), 67
\(P_w(v) \), 89, 124
\(P_w(v) \), 89, 124
i, 149
i, 149
\(\mapsto \), 201
\(\mapsto \), 201
\(\wedge \) (outer product)
\(\wedge \) (outer product)
\(G^3 \), 76
\(G^3 \), 76
\(G^n \), 100
\(G^n \), 100
\(\mathbb{R}^n \), 189
\(\mathbb{R}^n \), 189
\(\perp \), 64, 66
\(\perp \), 64, 66
\(\mathcal{N}(f) \), 138
\(\mathcal{N}(f) \), 138
\(e^{i\theta} \), 85
\(e^{i\theta} \), 85
\(\subseteq \), 197
\(\subseteq \), 197
\(\rightarrow \), 201
\(\rightarrow \), 201
\(f \), 146, 148
\(f \), 146, 148
\(\mathcal{V}_{\parallel}, \mathcal{V}_{\perp} \), 66
\(\mathcal{V}_{\parallel}, \mathcal{V}_{\perp} \), 66
\(|| \) (norm)
\(|| \) (norm)
\(G^n \), 99
\(G^n \), 99
\(\mathbb{R}^n \), 14
\(\mathbb{R}^n \), 14
complex number, 86
complex number, 86
inner product space, 58
inner product space, 58
oriented area, 73
oriented area, 73
oriented length, 3
oriented length, 3
oriented solid, 79
oriented solid, 79
vector space, 61
vector space, 61
\(|f|_{\mathcal{F}} \), 162
\(|f|_{\mathcal{F}} \), 162
\(|f|_{\mathcal{O}} \), 141
\(|f|_{\mathcal{O}} \), 141
\(|h|_F, 183\)
\(|h|_\mathcal{O}, 182\)
\{ \}, 197
\(j\)-vector part, 96
\(k\)-vector, 93, 95, 96
\(k\)-volume, 64, 105
\(o, 186\)

adjoint, 142
Aida, 90
angle, 89
 between subspaces, 122
 between vectors, 59
 bivector, 85
antisymmetricized geometric product, 116
associated homogeneous equation, 47
associative, 6
axial vector, 112
basis, 27
 \(\mathbb{G}^3, 82\)
 \(\mathbb{G}^n, 95\)
 \(k\)-vector, 96
bivector, 81
 direction, 193
blade, 104
canonical basis, 82, 93, 95
car analogy, 14, 17
Cartan-Dieudonné theorem, 173
cartesian form, 85
Cauchy-Schwarz inequality, 58
Cavalieri’s principle, 65
centralizer, 44
case of basis
 matrix, 154
 vector, 44
characteristic polynomial, 162
circular reasoning, 183
cm3 notebook, x, 185, 196
cohere, 125, 192, 193
column space, 144
commutative, 5
commutator, 116, 177
complex number, 85
 cartesian form, 85
 polar form, 85
condition number, 183
conformal model, 185, 186
conformal split, 188
conformal transformation
dilate, 190
invert, 190
reflect, 190
rotate, 189
translate, 189
conjugate, 86
contrapositive, 198
converse, 198
coordinate-based, 9
coordinate-free, vii, 8, 9, 51, 77, 89,
 104, 119, 151
coordinates
 oriented length, 8
 with respect to a basis, 28
corollary, 200
correlation, 62
counterexample, 199
covariance, 191
Cramer’s rule, 157
cross product, 110, 148
cyclic reordering property, 97
de Moivre’s theorem, 88
determinant
 linear transformation, 149
 matrix, 155
diagonal, 39
 matrix, 42
diagonalizable, 159
 orthogonally, 174
diagonalize, 161
dilation, 190
dimension, 30, 31
direct proof, 199
direct representation, 186
circle, 188
 line, 188
 plane, 188
 sphere, 188
direct sum, 66
distance, 120
distributive, 5
dual, 107
dual representation, 186
circle, 187
 line, 187
 plane, 187
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sphere</td>
<td>187</td>
</tr>
<tr>
<td>duality</td>
<td>109</td>
</tr>
<tr>
<td>eigenblade</td>
<td>166</td>
</tr>
<tr>
<td>eigenspace</td>
<td>158</td>
</tr>
<tr>
<td>eigenvalue</td>
<td>158</td>
</tr>
<tr>
<td>eigenvector</td>
<td>158</td>
</tr>
<tr>
<td>entangled</td>
<td>90</td>
</tr>
<tr>
<td>equivalent</td>
<td>198</td>
</tr>
<tr>
<td>exponential</td>
<td>85, 88, 178</td>
</tr>
<tr>
<td>extended fundamental identity</td>
<td>113</td>
</tr>
<tr>
<td>exterior algebra</td>
<td>109</td>
</tr>
<tr>
<td>finite dimensional</td>
<td>32</td>
</tr>
<tr>
<td>Fourier expansion</td>
<td></td>
</tr>
<tr>
<td>function</td>
<td>201</td>
</tr>
<tr>
<td>function space</td>
<td>17</td>
</tr>
<tr>
<td>fundamental identity</td>
<td></td>
</tr>
<tr>
<td>G^3</td>
<td>82</td>
</tr>
<tr>
<td>G^n</td>
<td>113</td>
</tr>
<tr>
<td>GA separator, viii, xii</td>
<td></td>
</tr>
<tr>
<td>Gaussian elimination</td>
<td>155</td>
</tr>
<tr>
<td>geometric algebra</td>
<td></td>
</tr>
<tr>
<td>G^3, 73</td>
<td></td>
</tr>
<tr>
<td>G^n, 93</td>
<td></td>
</tr>
<tr>
<td>geometric multiplicity</td>
<td>158</td>
</tr>
<tr>
<td>geometric product</td>
<td></td>
</tr>
<tr>
<td>G^3, 82</td>
<td></td>
</tr>
<tr>
<td>G^n, 93</td>
<td></td>
</tr>
<tr>
<td>Google</td>
<td>160</td>
</tr>
<tr>
<td>grade</td>
<td>96, 97, 135</td>
</tr>
<tr>
<td>grade involution</td>
<td>111</td>
</tr>
</tbody>
</table>
| Gram-Schmidt orthogonalization | 64,
| 65, 105, 120, 185 | |
| Grassmann algebra | 109 |
| group | 134 |
| homogeneity | 10 |
| homogeneous | 186 |
| homomorphism | 134 |
| hyperplane | 126 |
| identity | |
| matrix | 39 |
| transformation | 149 |
| if and only if | 198 |
| if-then | 198 |
| implies | 198 |
| indirect proof | 199 |
| infinite dimensional | 32 |
| inherit | 20 |
| inner product | |
| G^3, 100 | |
| R^n, 56 | |
| geometric interpretation | 121 |
| indefinite | 185 |
| oriented lengths | 51 |
| standard | 57 |
| inner product space | 57 |
| intersection | 197 |
| intrinsic | 9, 28, 44, 151 |
| invariant subspace | 164 |
| inverse | |
| matrix | 39 |
| multivector | 97 |
| inversion | 112, 190 |
| isotropy | 10 |
| join | 194 |
| k-vector | 96 |
| kernel | 47 |
| Lagrange polynomial | 50 |
| Laplace expansion | 157 |
| law of cosines | 58 |
| least squares | 68, 70, 182 |
| left contraction | 100 |
| Legendre polynomials | 69 |
| lemma | 200 |
| length | 4 |
| linear transformation | 133 |
| linear combination | 22 |
| linear dependence | 24 |
| linear independence | 24, 106 |
| linear model | 12 |
| linear transformation | 133 |
| square root | 169 |
| linearize | 189 |
| lunar laser ranging | 130 |
| Markov process | 43 |
| matrix | 33 |
| diagonal | 41, 42 |
| matrix inverse | 39 |
| matrix representation | 151, 152 |
| meet | 194 |
metric space, 69
multivector, 82, 93

norm, 14
\(\mathbb{G}^n \), 98, 99
complex number, 86
Frobenius, 162, 183
Hilbert-Schmidt, 162
inner product space, 58
operator, 141, 182
oriented area, 73
oriented length, 3
oriented solid, 79
trace, 162
normal transformation, 145, 163
normalize, 52, 59
normalized, 186
notation, 105
null, 185
null vector, 186
null space
linear transformation, 138
matrix, 47
NumPy, 70

one-to-one, 201
one-to-one correspondence, 202
onto, 201
orientation, 75
opposite, 107
orthonormal basis, 107
same, opposite, 75, 107
oriented
area, 73
length, 3
solid, 79
oriented arc, 85
origin, 11
orthogonal
basis, 53
inner product space, 57
matrix, 172
oriented length, 53
to a subspace, 64
transformation, 171
vectors, 53
orthogonal complement, 66, 108
orthonormal basis, 53, 185
outer product
\(\mathbb{G}^n \), 100
oriented lengths, 76
outer morphism, 146
outermorphisms, 121
parallelepiped, 64
parallelogram identity, 58, 61
parameter, 11
Parseval’s identity, 69
part, 96
particular solution, 47
Pauli algebra, 88
Pauli equation, 88
phase space, 12
point pair, 194, 195
point-normal equation, 55
polar decomposition
linear transformation, 181
matrix, 182
polar form, 85
polarization identity, 58
positive semidefinite, 181
precedence, 82
preserve, 121
principal component analysis, 170
project
\(\mathbb{G}^n \), 119
inner product space, 67
oriented length, 52
proof, 199
by contradiction, 199
proposition, 198
pseudoscalar, 95, 107
unit, 84
pseudoscalars, 95
pseudovector, 112
Pythagorean theorem, 58
areas, 77
quaternion, 87
range, 138
rank, 50, 144, 145
reciprocal basis, 117, 156
reflect, 126
\(\mathbb{G}^n \), 126
\(\mathbb{G}^{n+1} \), 190
reject
\(\mathbb{G}^n \), 119
inner product space, 67
relativity, 61
reverse, 98
Rodrigues’ formula, 92
rotate
\(\mathbb{G}^3 \), 89
\(\mathbb{G}^n \), 124
\(\mathbb{G}^{n+1,1} \), 189
row space, 144
scalar, 4
self-adjoint transformation, 167
set, 197
similar matrices, 156
simultaneous diagonalizability, 163
singular value decomposition
 linear transformation, 179
 matrix, 180
singular values, 179
skew
 matrix, 175
 transformation, 175
spacetime, 61, 185
span
 subspaces, 66
 vectors, 22
spectral theorem, 168
spinor, 87
standard basis, 27, 56
standard model, 186
subset, 197
subspace, 20
subtraction, 6
symbols, ix
symmetric
 matrix, 167
 transformation, 167
SymPy, viii
system of linear equations, 45
theorem, 199
torque, 112
trace
 linear transformation, 162
 matrix, 44
transition matrix, 44
translation, 189
transpose, 41
triangle inequality, 59
trivector, 81
union, 197
vector, 3, 12, 81
 bound, 11
 direction, 3, 190
 free, 3
 normal, 55, 187, 189
 tangent, 195
 unit, 52
vector operations
 \(\mathbb{R}^n \), 13
 oriented lengths, 4
vector space, 7, 13, 15
vectors
 direction, 3
 free, 3
volume, 64, 105
well defined, 75
\(\mathbb{R}^{r,s} \), 185
\(\det(A) \), 155, 157
\(\text{tr}(f) \), 162
bivector addition, 75
norm, 99
projection, 120
reflection, 127
reverse, 98
rotation, 124
zero, \(\mathbb{G}^n \), 96