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A new statement of the second law of thermodynamics is given. The law leads almost 
effortlessly, for very general closed systems, to a definition of absolute entropy S, a 
demonstration that ∆S ≥ 0 in adiabatic processes, a definition of temperature, and a 
demonstration that dS ≥ δQ/T along quasistatic processes. Entropy is given a clear 
physical meaning. 

"One of the principal objects of theoreti-
cal research in any department of knowledge 
is to find the point of view from which the 
subject appears in its greatest simplicity." 

J. W. Gibbs 

1. Introduction. The second law is at the center of thermodynamics. The law has many 
formulations.1 It is usually expressed in physical terms. The most common forms are those of 
Kelvin, Clausius, and Carathéodory. Kelvin's form IIK states: 

 It is impossible for a cyclic process of a thermodynamic system to transfer 
positive heat from a heat source, deliver positive work, and produce no other 
effect. (IIK) 

The existence of entropy S as a function of state is deduced from this law. Entropy has two 
fundamental properties: ∆S ≥ 0 for adiabatic processes and dS ≥ δQ/T for quasistatic processes. 
The existence and two properties of entropy are indispensable, for they, and not the second law 
directly, are used to obtain the results of thermodynamics. 

Another approach is that of Tisza and of Callen, who postulate the existence of an entropy 
with certain properties.2 

This paper offers a new statement of the second law, proves the existence and fundamental 
properties of entropy from it, and compares the development here with those of others. I see these 
positive features of the present approach: 

• It is general. We discuss here the equilibrium thermodynamics of closed systems. Every 
other approach to this thermodynamics of which I am aware makes, in addition to some 
statement of the second law, auxiliary assumptions which restrict the generality of the systems to 
which it applies. Sometimes the assumptions are made explicitly and sometimes implicitly. 
Examples are given in §4. With auxiliary assumptions present, one wonders the extent to which 
results obtained about entropy are dependent on these assumptions. We show that the results are 
independent of the assumptions. 

• It is simple. The proofs of the existence and fundamental properties of entropy take only a 
few lines in total. Often generality and simplicity are a trade-off; here they occur together. 

• It is independent of the notion of empirical or absolute temperature. In fact, we are able to 
define absolute temperature in terms of entropy and dispense entirely with empirical 
temperatures. 

• It gives entropy a simple and direct physical meaning. 
• It defines an absolute entropy, rather than only entropy differences. 



2 

Our second law has a weakness compared to Kelvin's: Kelvin's can be directly supported by 
pointing out that if it were violated, we could, for example, run a steamship with the ocean as a 
heat source or build a perpetual motion machine of the second kind, contrary to experience. 
(Callen's approach shares this weakness.) While this is a weakness, it is not a flaw: neither 
Einstein's field equation of general relativity nor the Schrödinger equation of quantum theory 
have been directly supported by experience. Their credibility is based on the correct predictions 
they make. 

Our second law incorporates part of the conventional third law of thermodynamics. This is 
what makes possible the simplicity and generality of our results about entropy. This indicates that 
part of the essence of the entropy concept is contained in the third law. 

In §2 we give our statement of the second law. The existence and two fundamental 
properties of entropy follow from it. In §3 we obtain further consequences of the second law. In 
§4 we explore the relationship between conventional thermodynamics and the approach taken 
here. We show that our entropy coincides with the entropy based on Kelvin's law IIK. We also 
show that conventional thermodynamics implies our second law. Thus the thermodynamics 
developed here is as secure as conventional thermodynamics. In §5 we discuss the extent to 
which our approach is more general than others. 

2. The Second Law. We take as primitive the terms heat, work, 
state, process, quasistatic process, and reversible process. State will always 
mean thermodynamic equilibrium state. Process is short for thermody-
namic process. In a quasistatic process, the thermodynamic system moves 
through a linear continuum of equilibrium states. (This definition is 
elaborated in §5, under "Coordinates".) A quasistatic process is carried out 
reversibly if a slight change in the forces (thermal and mechanical) driving 
the process can reverse it. (Slow heating of water by a resistor is an exam-
ple of a quasistatic ir reversible process.) Whatever ambiguity these terms 
suffer, they are commonly used, and it is not the purpose of this paper to 
clarify them.3 Note that there has been no mention of temperature − 
empirical or Kelvin. We will not use any notion of temperature when 
defining entropy. Instead, we will use entropy to define temperature. 

Let Z be a closed (with respect to the transfer of matter) thermody-
namical system. In the most general thermodynamical process P of system 
Z, heat is transferred to Z, work is done on Z, and/or internal constraints of 
Z are manipulated. As a result of P, Z's (equilibrium) state changes from A to B. All such thermo-
dynamical processes can be achieved with the arrangement of Fig. 1. The curve for P is dashed to 
indicate that Z need not be in equilibrium during P, i.e., P need not be quasistatic. It is essential 
to our analysis that there is only one heat source external to Z for all processes. We use a standard 
heat source of triple point water. This does not restrict P in any way: the heat QP transferred to Z 
during P is transferred by the heat transfer device, which also transfers heat HP from the heat 
source and work from a work source as needed. We take it as an empirical fact that there exist 
heat transfer devices which can so transfer heat, and in fact do so reversibly. The heat transfer 
device must be returned to its original state at the end of P. Different devices can be used for dif-
ferent P's. Our analysis does not require any bookkeeping of the work delivered to the device or 
to Z. 
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Fig. 1. The most gen-
eral thermodynamical 
process P of Z. 
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We give an example. Z is a cylinder of gas with a piston. The heat transfer device is a Carnot 
engine operating between the standard heat source and the gas (or perhaps two engines operating 
independently). QP might alternate between positive and negative values during P. Work is done 
on Z by moving the piston, and/or by dissipating mechanical energy to internal energy, as in 
Joule's paddle wheel experiment. The cylinder might be separated into two chambers by an inter-
nal diathermic wall which is moved or removed during the process. 

Before proceeding, we must acknowledge that Kelvin's second law IIK is not universally true: 
it fails for negative absolute temperature states. Most thermodynamic systems do not have such 
states, but nuclear spin systems do.4 Positive temperature states are characterized (as we shall 
see) by the property that work can be dissipated in them, as in Joule's paddle wheel experiment, 
i.e., 

A change of state made by delivering positive heat to Z can also be made 
by delivering positive work to Z.  (1) 

Thus Kelvin's law should read (1) ⇒ IIK, or, more loosely: If mechanical energy can be dissi-
pated to internal energy, then heat cannot be completely converted to mechanical energy. Our 
second law is also restricted to states satisfying (1). 

We now state our version of the second law of thermodynamics: 

It is impossible to transfer an arbitrarily large amount of heat from a stan-
dard heat source with processes terminating at a fixed state of Z. (II) 

In other words, for every state B of Z, 

 Sup{ HP: P terminates at B } < ∞. (II) 

Since (II) holds, we can define the entropy S(B) of state B: 

 S(B) = Sup{ HP/To: P terminates at B }, (2) 

where To = 273.16. (The temperature of triple point water is defined to be To in the Kelvin tem-
perature scale. But for us, for now, To is just a number, not a temperature. The only reason for 
introducing To is so our units of entropy and temperature will agree with those of conventional 
thermodynamics; the entire development below could be made without it.) 

Entropy is clearly a function of state. S(B) has a simple physical meaning: it is the most heat 
(divided by To) that can be transferred from a standard heat source in processes terminating at B. 
Note that we assign an absolute entropy to a state, not just an entropy difference between states. 

Consider a particular process P from state A to state B. Precede P 
with any process P ' which terminates at A. See Fig. 2. Since P ' + P ter-
minates at B, we see from (2) that 

 HP '/To + HP/To ≤ S(B). (3) 

If we take the supremum of (3) over all processes P' terminating at A, 
then by (2) we obtain 

 S(A) + HP/To ≤ S(B). (4) 

If HP = 0, then 
 S(A) ≤ S(B).    (HP = 0) (5) 
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Fig. 2. If P is adiabatic, 
then S(A) ≤ S(B). 
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If P is adiabatic, then no heat is transferred to Z. Thus the heat transfer device need do nothing, 
HP = 0, and (5) holds. We have a simple proof of the first fundamental property of entropy: it 
does not decrease in an adiabatic process. If P is a reversible adiabatic process, then also from 
(5), S(B) ≤ S(A), and so S(A) = S(B). 

Our definition of S did not use a notion of temperature. Intuitively, this was possible because 
we used the standard heat source as a "common medium of exchange" for the different tempera-
tures of Z during a process. We now define temperature using S. Consider an infinitesimal revers-
ible process which transfers heat δQ and no work to Z. Define the temperature T of Z by 

 1/T = dS/δQ. (6) 

According to (1), if δQ > 0, then the same state change can be made in an adiabatic process 
which delivers work to Z. Since this process is adiabatic, dS ≥ 0. So from (6), T > 0. 

Let P' be an infinitesimal quasistatic process from state C to 
state B with entropy change dS. Let P" be the reversible process 
from state C to state A with the same heat δQ as P' but with no 
work done on Z. See Fig. 3. Consider the process P = −P" + P'. 
During −P", heat −δQ is transferred to Z. During P', these trans-
fers are reversed. Thus we may take HP = 0, and (5) applies. 
Using (5) in the form S(B) − S(C) ≥ S(A) − S(C), and using (6) 
for P", 

dS ≥ δQ/T, 

which is the second fundamental property of entropy. If P' is reversible, then dS = δQ/T. For a 
finite reversible quasistatic process, ∆S = ∫δQ/T. 

This completes our statement of the second law, definition of entropy and temperature, and 
derivation of the two fundamental properties of entropy. 

3. Further Consequences of the Second Law. It is natural to ask: What processes 
terminating at B give large H's in the definition (2) of S(B)? We give two answers.  

(i) Let P and R be two processes from A to B, with R reversible. Suppose HR < HP. Then for 
the cyclic process −R + P, B ? B, H−R + P = −HR + HP > 0. Repeating this process over and over, we 
can make H as large as we like in processes terminating at B. This contradicts II. Thus HR ≥ HP. 
If P is itself reversible, then also HP ≥ HR, and so HP = HR. Thus reversible processes from A to B 
(if they exist) all have the same H, which is the largest H for processes from A to B. 

(ii) Let P be a process from state A to state B. Let P' be a reversible process starting at A in 
which the heat transfer device transfers positive heat from Z to the standard heat source. Then −P' 
+ P terminates at B. We have H-P'+P = H-P' + HP and H-P' = −HP' > 0. Thus 

 H-P'+P > HP. (7) 

According to (7), we obtain a larger H (i.e., H-P'+P) than HP if we reversibly transfer positive heat 
from Z before starting. 

If absolute zero is unattainable in the sense that from every state of Z (no matter how cold) 
there is a reversible process P' which transfers positive heat from Z, then (7) shows that the Sup 
in the definition (2) of S(B) is not attained.5 (Analogously, Sup{x: 0 ≤ x < 1} exists, but it is not 
attained.) 
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Fig. 3. dS ≥ δQ/T. 
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A compound system Z = (Z1, Z2) is a thermodynamic system composed of subsystems Z1 and 
Z2, separated by a wall. The subsystems must themselves be thermodynamic systems in the sense 
of this paper. In particular, they must be closed. Thus the wall must not allow the transfer of 
matter. During a process of Z, the wall can be adiabatic or diathermic, or alternate between the 
two. The wall can, e.g., divide a container of gas into two parts. During a process it can be fixed 
or movable, or alternate. 

States of Z are of the form B = (B1, B2) where Bi is a state of Zi. These states have an entropy, 
S(B1, B2). In addition, Z1 and Z2 have their own entropies, S1(B1) and S2(B2). 

We now show that entropy is additive over subsystems: 

 S(B1, B2) = S1(B1) + S2(B2),   (Rev) assumed, (8) 

where the statement (Rev) is: 

 There is a reversible process between every pair of states of a thermodynamic system. (Rev) 

This assumption is commonly made: Authors who define the entropy difference between two 
states as ∫δQ/T along a reversible process between the states assume, explicitly or implicitly, 
(Rev). But it is desirable to find a proof of (8) without (Rev). 

Now let (A1, A2) be any state of the compound system Z. According to (Rev), there are 
reversible processes Ri of Zi from Ai to Bi. If R1 is followed by R2, then (R1, R2) is a reversible 
process of Z from (A1, A2) to (B1, B2), and 

 H(R1, R2) = HR1
 + HR2

. (9) 

We noted above that all reversible processes between two given states have the same, and largest, 
H for processes between the states. It follows that in determining the Sup in the definition (2) of 
S(B), we need not use all processes terminating at B: we need use only a single reversible process 
from each starting state A to B. Use (R1, R2) as the reversible process from (A1, A2) to (B1, B2) in 
the definition (2) of S(B1, B2), and use Ri as the reversible process from Ai to Bi in the definition 
of S(Bi ). Then take the Sup over all (R1, R2) in (9) to obtain (8). 

Now suppose that Z1 and Z2, with temperatures T1 and T2 = T1 + dT > T1, have an adiabatic 
wall between them. Make the wall momentarily diathermic, and suppose heat δQ transfers spon-
taneously from Z2 to Z1. We suppose that this transfer is reversible. From (5), dS ≥ 0, as this is an 
adiabatic process of Z. From (6), dS1 = δQ/T1 and dS2 = -δQ/T2. And from (8), dS = dS1 + dS2. 
Putting all this together, δQ/T1 − δQ/T2 ≥ 0. Thus δQ > 0; positive heat transfers from the system 
at the higher temperature to that at the lower, in accord with our intuitive understanding of tem-
perature. Note that since (8) was used, this is proved only under the assumption (Rev). 

4. Relationship to Conventional Thermodynamics. Intuitively, our second law states 
that there is a limit to how cold Z can be. We formalized this in II by assuming a limit on H for 
processes terminating at a given state B. We might have instead tried to assume a limit on Q for 
processes terminating at B. But this does not work. To see this, let a Carnot cycle R of Z starting 
and terminating at B have net heat QR > 0. Repeating R n times, we have a process with Q = nQR, 
which can be made arbitrarily large. 

We now show that the entropy and temperature based on II are the same as those based on 
IIK. Let R be a reversible process from A to B. Applying (4) separately to R and −R gives 

 ∆SR = S(B) − S(A) = HR/To.   (R reversible) (10) 
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Considered as a reversible process of Z + heat transfer device + heat source in Fig. 1, R is 
adiabatic. Thus the S based on IIK also gives (10). (Remember that we require the heat transfer 
device to be returned to its original state after R.) This shows that the entropies based on II and 
IIK have the same entropy differences, which is all that IIK defines. Note that in the analysis of 
(10) via our second law, To is, as we have emphasized, just a number, whereas in the analysis of 
(10) via Kelvin's second law, To is the Kelvin temperature of the standard heat source. The 
numerical equality of the two To's ensures the numerical equality of our and Kelvin's entropy. 

The definition (6) of T agrees with the Kelvin temperature scale. For (6) is valid in conven-
tional thermodynamics with the same meanings on the right side for dS (as we have just seen) 
and δQ. In particular, we assign temperature To to the standard heat source, in accord with the 
Kelvin temperature scale. 

Theorem. II ⇔ (IIK + (S ≥ 0)). The proof has three parts. 

(i) II ⇒⇒⇒⇒ IIK. We obtain the result by showing that −IIK contradicts consequences of II. Sup-
pose then that a thermodynamic system Zo violates IIK: Zo goes through a cycle, transferring posi-
tive heat Q from a heat source HS at temperature T and delivering positive work. (HS is not the 
standard heat source of Fig. 1. For in general, T ≠ To.) Consider this process P as a process of Zo 
+ HS. Then P is adiabatic, and so ∆SP ≥ 0. Assume (Rev).6 Then as shown above, S is additive. 
Thus ∆SP is the sum of the entropy changes of Zo and HS. The entropy change of Zo is zero, since 
it goes through a cycle. The entropy change of HS is −Q/T. Thus ∆SP = 0 + (−Q/T) < 0. This 
contradiction to ∆SP ≥ 0 establishes IIK. 

(ii) II ⇒⇒⇒⇒ (S ≥≥≥≥ 0). One process in (2) terminating at B starts at B and immediately stops, 
doing nothing. For this process HP = 0. Thus S(B) ≥ 0 in (2). 

(iii) (IIK + (S ≥≥≥≥ 0)) ⇒⇒⇒⇒ II. Let SK be Kelvin's entropy. Let P be a process terminating at state 
B. Considered as a process of Z + heat transfer device + heat source, P is adiabatic. Thus an 
analysis based on IIK gives 

SK(B) − SK(A) − HP/To ≥ 0, 

where A is the starting state of P. Since SK(A) ≥ 0, HP ≤ ToSK(B). Since this is true for all P termi-
nating at B, Sup{ HP: P terminates at B } < ∞, which is II. This completes the proof. 

We now discuss the relationship between II and the third law of thermodynamics.7 It is con-
venient to divide the third law into two parts: 

 S ≥ 0. (IIIi) 
 S(0K) = 0. (IIIii) 

(As 0K is unattainable, S(0K) = 0 is only an abbreviation for S → 0 as T → 0K.) 
With this terminology, we can restate our theorem: II ⇔ (IIK + IIIi). 
IIK does not imply IIIi. For a monatomic ideal gas satisfies IIK, but violates IIIi: its entropy 

S → −∞ as T → 0K.8 In view of our theorem, this means that our second law is stronger than 
Kelvin's. 

II does not imply IIIii. To see this, consider glycerol, whose liquid form freezes to a 
crystalline form at 291K. Liquid glycerol can also be supercooled to a glassy form near 0K. In 
process C, start with the crystalline form near 0K and reversibly heat it to the liquid form, 
arriving at state B. In process G, start with the same sample in the glassy form near 0K, and 
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reversibly heat to state B. The entropy changes for these processes have been measured using 
∆S = ∫δQ/T. The result is ∆SC > ∆SG.9 

From (10), ∆SC > ∆SG implies that HC  > HG . Thus processes which start with crystalline 
glycerol near 0K contribute larger H's to the supremum in the definition (2) of S(B) than 
processes which start with glassy glycerol near 0K. This is not a problem for II. 

But there is a problem for IIIii. For if S(0K, crystalline) = 0, then ∆SC > ∆SG implies that 
S(0K, glassy) > 0, violating IIIii. The usual explanation is that since a frozen in atomic disorder 
in glassy glycerol persists to 0K, glassy glycerol is not "really" in equilibrium, and so one 
cannot speak of its entropy.10 I am not entirely happy with the explanation in view of the 
remarks about equilibrium in Ref. 3. And if glassy glycerol is not in equilibrium, can one speak 
of its Kelvin temperature, which is defined only for equilibrium states? 

Be that as it may, it is entirely consistent with II that there be a substance like 
glycerol whose glassy form is in equilibrium (in the sense of the remarks in Ref. 3) and 
has S(0K glassy) > 0, violating IIIii. This shows that II does not imply IIIii. 

We have seen that a full discussion of IIIii involves the atomic structure of the system, 
whereas IIIi is independent of microscopic considerations. We might call IIIi the thermodynami-
cal part of the third law, and IIIii the statistical mechanical part. We can then restate the theorem 
above by saying that our second law strengthens Kelvin's by incorporating the thermodynamical 
part of the third law. Our purely thermodynamical second law needs no help from an atomic pic-
ture of matter to establish the existence of an absolute entropy and its properties in a simple and 
general manner. This leaves the delicate S(0K) = 0 statistical mechanical part of the third law as 
a separate matter. 

5. Auxiliary Assumptions. As stated in §1, other treatments of entropy use auxiliary 
assumptions which restrict their generality. We give several examples. 

Coordinates. Boyling11 gives the example of two containers of water equipped with pistons 
and separated by a diathermal wall. Usually three coordinates suffice to specify the state of this 
system (e.g., the volumes of the two containers and their common temperature), but if the water 
in both containers is at a triple point, then four coordinates are needed (e.g., the volumes and 
energies of the two containers, which can be varied independently over a limited range without 
changing the common temperature of the containers). All definitions of an entropy function using 
coordinates of which I am aware require a fixed number of coordinates to describe the states of 
the system. These definitions do not assign an entropy to Boyling's system. We do not use 
coordinates. 

Mathematically speaking, a state space with a fixed number of continuous coordinates is a 
manifold. Boyling, and also Cooper,12 use the more general structure of a topological space. 
Boyling points out that the state space of his example is not a manifold, but is a topological 
space. Our definition assigns an entropy to his system. 

In defining a quasistatic process as a linear continuum of states, we have implicitly assumed 
that our thermodynamical state spaces are topological spaces. For a topological space is the 
minimal structure necessary to give this meaning: a linear continuum of states is a continuous 
image of a closed interval of the real line (thought of as an interval of time) in the state space. 

Carnot Cycles. Thomsen and Hartka give the example of water near its temperature of 
maximum density, where there are "strange" Carnot cycles.13 For example, there are cycles with 
one adiabat and one isothermal. Most definitions of absolute temperature use "normal" Carnot 
cycles, with two adiabats and two isothermals, and tacitly assume that normal, and only normal, 
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cycles exist. These definitions do not establish that water has an absolute temperature under the 
conditions of the example. A discussion of entropy based on an absolute temperature restricted in 
generality is similarly restricted in generality. We do not use Carnot cycles. 

Homogeneity. Callen assumes that entropy is homogeneous, i.e., if (in Callen's terminology) 
X is a set of extensive coordinates defining the state of Z, then for λ > 0, S(λX) = λS(X).14 
Homogeneity is an approximation, which is obtained by ignoring "surface effects". We do not 
make this approximation. 

There are two other conditions often discussed in relation to entropy. One is concavity: 

S(λX + (1−λ)Y) ≥ λS(X) + (1−λ)S(Y),  0 ≤ λ ≤ 1. 

The other is superadditivity: 

S(X + Y) ≥ S(X) + S(Y). 

The idea of superadditivity is that if systems with coordinates X and Y are combined, then the 
total entropy is nondecreasing. Note that this is a different situation than additivity over 
subsystems (8). In (8), the subsystems retain a separate identity. For superadditivity, the 
subsystems are combined, destroying the subsystems. 

We now show that, assuming (Rev), our entropy is superadditive without using coordinates. 
Let system Zi be in state Bi , i = 1,2. Let the Zi be separated by an adiabatic unmovable wall, 
forming composite system Z. Then by the additivity of entropy over subsystems (8), Z has 
entropy S(B1, B2) = S(B1) + S(B2). Now remove the wall, allowing the systems to combine. This is 
an adiabatic process of Z (which destroys the subsystems), terminating in a state of Z, which we 
denote B1 + B2. Since the process is adiabatic, 

S(B1 + B2) ≥ S(B1, B2) = S(B1) + S(B2).    (Rev) assumed. 

This proves superadditivity under the assumption (Rev). 
One relationship between superadditivity, concavity, and homogeneity is:15  

 (Superadditivity + Concavity) → Homogeneity. (11) 

Since homogeneity is only an approximation and superadditivity holds, it follows from (11) that 
concavity fails. (Of course entropy is usually approximately concave.)  

Note added 1/18/08: H. Touchette has given examples of spin models in which entropy is 
not concave. (“Simple spin models with non-concave entropies”, Am. J. Phys. 76, 26-30 (2008).) 

All this has bearing on the debate as to whether superadditivity or concavity is the key prop-
erty of entropy.16 In particular, the claim that "The essence of the second law is concavity"17 
seems too strong. 

Adiabatic Accessibility. Carathéodory's version of the second law states that in every neigh-
borhood of a state A, there are states B not adiabatically accessible from A. Buchdahl's very ele-
gant development of thermodynamics is explicitly based on the additional assumption that A 
must then be adiabatically accessible from B.18 Both Boyling and Cooper also make this 
assumption.19 But König gives this example:20 Consider a mixture of hydrogen and oxygen 
enclosed in a rigid adiabatic chamber. Explode the mixture. Then cool it, reducing its entropy 
part of the way to that of the original mixture. Then neither the original nor final state is 
adiabatically accessible from the other. And Thomsen has given the example of a cylinder 
enclosing a gas21. The cylinder has a piston which moves with sliding friction. States of the same 
entropy but with different positions of the piston are not adiabatically connected. We make no 
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assumptions about adiabatic accessibility. (Landsberg22 discusses other implicit assumptions of 
several authors − including Carathéodory − who base their thermodynamics on Carathéodory's 
axiom.) 

Buchdahl's23 and Zemansky and Dittman's24 approach are based on the existence of 
reversible adiabatic surfaces, in which two states are on the same surface if and only if they have 
the same entropy. Such surfaces do not exist in König's or Thomsen's example. 

I thank an anonymous referee for pointing out an error in an earlier version of this paper and 
for several valuable suggestions. 

                                                 
1See the following for a discussion of the second law. Joseph Kestin, Ed., The Second Law of Thermodynamics 

(Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania, 1976). S. R. Montgomery, Second Law of 
Thermodynamics (Pergamon Press, Oxford, 1966). M. Zemansky and R. Dittman, Heat and Thermodynamics 
(McGraw-Hill, New York, 1981), 6th ed. F. O. König, "On the various statements of he second law of 
thermodynamics", Surv. Prog. Chem. 7, 149-251 (1976). P. T. Landsberg, Thermodynamics with Quantum 
Statistical Illustrations (Interscience, New York, 1961). Landsberg's book is based on Carathéodory's form of the 
second law. 

2L. Tisza, Generalized Thermodynamics (M. I. T. Press, Cambridge Massachusetts, 1966). H. Callen, 
Thermodynamics and an Introduction to Thermostatistics (Wiley, New York 1985), 2nd ed.  

3See the following for discussions of the primitive terms. O. Redlich, "Fundamental thermodynamics since 
Carathéodory", Rev. Mod. Phys. 40, 556-563 (1968). H. Erlichson, "Internal energy in the first law of 
thermodynamics", Am. J. Phys. 52, 623-625 (1984). D. Kivelson and I. Oppenheim, "Work in irreversible 
expansions", J. Chem. Ed. 43, 233-235 (1966). The notion of equilibrium is particularly difficult. See the following 
references. H. Callen, Ref. 2, p. 15: "In practice the criterion for equilibrium is circular. Operationally, a system is in 
an equilibrium state if its properties are consistently described by thermodynamic theory!" (Emphasis Callen's.) H. 
A. Buchdahl, Concepts of Classical Thermodynamics (Cambridge University Press, Cambridge, 1966), p. 8: "One 
may sometimes − strictly speaking, perhaps always − have to assume that a given terminal condition is one of 
equilibrium, even when the possibility of a direct verification of this assumption is not at hand. In that case 
subsequent empirical verification of falsification of certain theoretical conclusions, based in part on the assumption, 
must serve instead." O. Costa de Beauregard and M. Tribus, "Information theory and thermodynamics", Helv. Phys. 
Acta, 47, 238-247 (1974), p. 243: "Geological samples from the earth's interior have been found to be in 
thermodynamic disequilibrium. If substances that have been around for times comparable to the life of the Earth are 
not in equilibrium, surely 'waiting' does not guarantee equilibrium. There is no way out of the dilemma that 
equilibrium is defined via thermodynamic constructs which were in turn defined for the equilibrium state. We have 
no way of telling if a system is 'at equilibrium' except by making experiments which rely on the constructs which are 
defined by the theory of equilibrium.". R. O. Davies and G. O. Jones, "Thermodynamic and kinetic properties of 
glasses", Adv. Physics 2, 370-410 (1953), p. 395. Davies and Jones have interesting comments about the concept of 
equilibrium. In particular, they claim that a glassy phase is as much in equilibrium as a mixture of hydrogen and 
oxygen, which is unstable with respect to chemical reactions. And they point out that even an atom can be unstable 
with respect to spontaneous nuclear reactions. 

4Norman F. Ramsey, "Thermodynamics and statistical mechanics at negative absolute temperatures", Phys. 
Rev. 103, 20-28 (1956), reviews the arguments in favor of considering nuclear spins systems as equilibrium systems 
at negative absolute temperatures. Ramsey points out that in a pure LiF crystal, the spin lattice relaxation time is as 
large as 5 minutes, whereas the spin-spin relaxation time is less than 10-5 sec. For a period of the order of minutes, 
the spin system obeys the (slightly modified) laws of thermodynamics. See also the comments on equilibrium in Ref. 
3. The texts by M. Zemansky and R. Dittman, Ref. 1, and G. Weinreich, Fundamental Thermodynamics (Addison-
Wesley, Reading MA, 1968), use negative absolute temperature states. See also comments on negative absolute 
temperatures in Ralph Baierlein, Atoms and Information Theory: An Introduction to Statistical Mechanics (Freeman, 
San Francisco, 1971), pp. 405-408. However, H. Callen, Ref. 2, p. 29, states that "Such states are not equilibrium 
states ... [because] they spontaneously decay away." It is difficult for me to reconcile this statement of Callen's with 
his comments on equilibrium cited in Ref. 3 and Ramsey's observations. 



10 

                                                                                                                                                             
5Many authors take (some form of) the unattainability of absolute zero to be equivalent to (some form of) the 

third law of thermodynamics. See, e.g., M. Zemansky and R. Dittman, Ref. 1, pp. 514-518; H. Callen, Ref. 2, p. 281; 
E. G. Guggenheim Thermodynamics (North-Holland, Amsterdam, 1959), 4th ed., p. 192; and J. Wilks, The Third 
Law of Thermodynamics (Oxford University Press, London, 1961), p. 113. Other authors disagree. See, e.g., John C. 
Wheeler, "Nonequivalence of the Nernst-Simon and the unattainability statements of the third law of 
thermodynamics", Phys. Rev. A 43, 5289-5295 (1991); John C. Wheeler, "Addendum to 'Nonequivalence of the 
Nernst-Simon and the unattainability statements of the third law of thermodynamics' ", Phys. Rev. A 45, 2637-2640 
(1992); P. T. Landsberg, "The third law of thermodynamics" in Satyendrana Bose 70th Birthday Commemoration 
Volume (Satyendrana Bose 70th Birthday Celebration Committee, Calcutta, 1965-66), vol. 2, pp. 209-220; and P. T. 
Landsberg, Ref. 1,  pp. 100-115. 

6If we are willing to do a bit more work, we can finish the proof without (Rev), as follows. Let Z = Zo + HS be 
as in Fig. 1, (So now we have two heat sources: HS and the standard heat source of Fig. 1.) We know that ∆SP ≥ 0. 
Let process P' of Z start in the same state as P, reversibly transfer positive heat Q from HS, and leave Zo alone. From 
(10), ∆SP ' = HP '/To. Also, since P' and P have the same initial and final states of Z, ∆SP ' = ∆SP. Now let P'' be the 
process P' considered as a process of HS alone. Then HP '' = HP '. Again from (10), ∆SP '' = HP ''/To. Putting all this 
together, ∆SP '' = HP ''/To = HP '/To = ∆SP ' = ∆SP ≥ 0. But also ∆SP '' =  −Q/T < 0. This contradiction establishes IIK. 

7J. Wilks, Ref. 5, provides an extensive discussion of the third law. 
8H. Callen, Ref. 2, p. 68. 
9J. Wilks, Ref. 5, p. 58. 
10J. Wilks, Ref. 5, p. 59. 
11J. B. Boyling, "Thermodynamics of non-differentiable systems", Int. J. Th. Phys. 9, 379-392 (1974). 
12J. L. B. Cooper, "The foundations of thermodynamics", J. Math. Anal. Appl. 17, 172-193 (1967). 
13J. Thomsen and T. Hartka, "Strange Carnot cycles; thermodynamics of a system with density extremum", Am. 

J. Phys. 30, 26-33 and 388 (1962). See their Fig. 5e. They also point out that "this system does not seem to meet the 
basic assumptions used in the Carathéodory approach. For those who feel that Carathéodory's formulation is the only 
rigorous approach to thermodynamics, this point would certainly seem to require further investigation."  

14H. Callen, Ref. 2, p. 28. 
15P. T. Landsberg and D. Tranah, "Entropies need not be concave", Phys. Lett. 78A, 219-220 (1980). 

Landsberg has kindly pointed out (private communication) that the proof of (10) assumes that S(0) = 0. However, an 
examination of the proof shows that the property S ≥ 0 suffices to establish (11). 

16B. H. Lavenda and J. Dunning-Davies, "The essence of the second law is concavity", Found. Phys. Lett. 3, 
435-441 (1990); P. T. Landsberg and Tranah, Ref. 15; P. T. Landsberg and R. B. Mann "New types of 
thermodynamics from (1 + 1)−dimensional black holes, Class. Quantum Grav. 10, 2373-2378 (1993). 

17Lavenda and Dunning-Davies, "The essence of the second law is concavity", Found. Phys. Lett. 3, 435-441 
(1990). I have no disagreement with the technical content of the paper, only the conclusion expressed in its title. 

18H. A. Buchdahl, Ref. 3, p. 42. 
19J. B. Boyling, "Thermodynamics of non-differentiable systems", Int. J. Th. Phys. 9, 379-392 (1974). J. L. B. 

Cooper, Ref. 12, pp. 172-193 (1967). 
20F. O. König, Ref. 1, p. 171. 
21J. Thomsen. "Thermodynamics of an irreversible quasi-static process", Am. J. Phys. 28, 119-122 (1960). 
22P. T. Landsberg "On suggested simplifications of Carathéodory's thermodynamics", Physica Status Solid 1, 

120-126 (1961). 
23H. A. Buchdahl, Ref. 3. 
24M. Zemansky and R. Dittman, Ref. 1. 


