A New Statement of the Second Law of Thermodynamics

Alan Macdonald « Luther College « Decorah, 1A 52103A « macdonal@Iuther.edu ;/1g/08

A new statement of the second law of thermodynaisigésen. The law leads almost
effortlessly, for very general closed systems, aefinition of absolute entrop$ a
demonstration thalS > 0 in adiabatic processes, a definition of tempeeatand a
demonstration thadlS > JQ/T along quasistatic processes. Entropy is givenearcl
physical meaning.

"One of the principal objects of theoreti-
cal research in any department of knowledge
is to find the point of view from which the
subject appears in its greatest simplicity."

J. W. Gibbs

1. Introduction. The second law is at the center of thermodynaniibs. law has many
formulations® It is usually expressed in physical terms. The tneosnmon forms are those of
Kelvin, Clausius, and Carathéodory. Kelvin's foilpnstates:

It is impossible for a cyclic process of a theriyrmamic system to transfer
positive heat from a heat source, deliver posiveek, and produce no other
effect. ()

The existence of entrofyas a function of state is deduced from this lantr@py has two
fundamental propertied&S > 0 for adiabatic processes ati> JQ/T for quasistatic processes.
The existence and two properties of entropy arespahsable, for they, and not the second law
directly, are used to obtain the results of therynadhics.

Another approach is that of Tisza and of Callenp wbstulatethe existence of an entropy
with certain propertieS.

This paper offers a new statement of the secondpasves the existence and fundamental
properties of entropy from it, and compares thesttigyment here with those of others. | see these
positive features of the present approach:

It is general. We discuss here #@xguilibrium thermodynamics oflosedsystems. Every
other approach to this thermodynamics of which | aware makes, in addition to some
statement of the second law, auxiliary assumptvamish restrict the generality of the systems to
which it applies. Sometimes the assumptions areenmeglicitly and sometimes implicitly.
Examples are given in 84. With auxiliary assumgipnesent, one wonders the extent to which
results obtained about entropy are dependent @e thesumptions. We show that the results are
independent of the assumptions.

« Itis simple. The proofs of the existence and Aamdntal properties of entropy take only a
few lines in total. Often generality and simplicéisze a trade-off; here they occur together.

« Itis independent of the notion of empirical osalute temperature. In fact, we are able to
define absolute temperature in terms of entropy and dspeentirely with empirical
temperatures.

- It gives entropy a simple and direct physical niegn

- It defines an absolute entropy, rather than ontyopy differences.



Our second law has a weakness compared to Kelialgin's can bealirectly supported by
pointing out that if it were violated, we couldrfexample, run a steamship with the ocean as a
heat source or build a perpetual motion machin¢hefsecond kind, contrary to experience.
(Callen's approach shares this weakness.) Whike ithaweaknessit is not aflaw: neither
Einstein's field equation of general relativity rtbe Schrodinger equation of quantum theory
have beerlirectly supported by experience. Their credibility is lthea the correct predictions
they make.

Our second law incorporates part of the conventitmned law of thermodynamics. This is
what makes possible the simplicity and generalityw results about entropy. This indicates that
part of the essence of the entropy concept is owedan the third law.

In 82 we give our statement of the second law. €Restence and two fundamental
properties of entropy follow from it. In 83 we olstdurther consequences of the second law. In
84 we explore the relationship between conventith@aimodynamics and the approach taken
here. We show that our entropy coincides with thegopy based on Kelvin's law,IlIWe also
show that conventional thermodynamics implies oecosd law. Thus the thermodynamics
developed here is as secure as conventional thgmaodcs. In 85 we discuss the extent to
which our approach is more general than others.

2. The Second Law. We take as primitive the terms heat, wortk, p__.---=" 3
state, process, quasistatic process, and revesibbessStatewill always . ’éB
mean thermodynamic equilibriunstate Processis short forthermody- | A Z ¢
namic processln aquasistatic procesghe thermodynamic system moves—¢
through a linear continuum of equilibrium state$hi§ definition is Qp
elaborated in 85, under "Coordinates".) A quassfabcess is carried oug Toat T

reversiblyif a slight change in the forces (thermal and ra@atal) driving | transfer le— Work
the process can reverse it. (Slow heating of watex resistor is an examt Device
ple of a quasistatiazreversible process.) Whatever ambiguity these terms A
suffer, they are commonly used, and it is not thgpse of this paper to Hp
clarify them® Note that there has been no mention of temperaturfStandard
empirical or Kelvin. We will not use any notion tgmperature when S%?J?ct;e
defining entropy. Instead_, we will use entropy &fiide temperature. ig. 1. The most gen-
I__et Z be aclosed(with respect to the trans_fer of matter) thermoqgyz, thermodynamical
namical system. In theost generathermodynamical proce$5of system process of 7.
Z, heat is transferred @, work is done orZ, and/or internal constraints of
Z are manipulated. As a result®fZ's (equilibrium) state changes frokto B. All such thermo-
dynamical processes can be achieved with the anaagt of Fig. 1. The curve f&is dashed to
indicate tha®Z need not be in equilibrium durirfgy i.e.,P need not be quasistatic. It is essential
to our analysis that there is only one heat soexternal taZ for all processes. We use a standard
heat source of triple point water. This does netriet P in any way: the hed, transferred t&
during P is transferred by the heat transfer device, whalso transfers head, from the heat
source and work from a work source as needed. Weeitaas an empirical fact that there exist
heat transfer devices which can so transfer heat,irafact do so reversibly. The heat transfer
device must be returned to its original state atethd ofP. Different devices can be used for dif-
ferentP's. Our analysis does not require any bookkeepirntbeowork delivered to the device or
to Z.




We give an exampl& is a cylinder of gas with a piston. The heat tf@ndevice is a Carnot
engine operating between the standard heat sondctha gas (or perhaps two engines operating
independently)Q, might alternate between positive and negativeesabluringP. Work is done
on Z by moving the piston, and/or by dissipating meatenenergy to internal energy, as in
Joule's paddle wheel experiment. The cylinder miighseparated into two chambers by an inter-
nal diathermic wall which is moved or removed dgrihe process.

Before proceeding, we must acknowledge that Ked\econd law }lis not universally true:
it fails for negative absolute temperature statésst thermodynamic systems do not have such
states, but nuclear spin systems’deositive temperature states are characterizeavgashall
see) by the property that work can be dissipatatiem, as in Joule's paddle wheel experiment,
ie.,

A change of state made by delivering positive be@tcan also be made
by delivering positive work t@. Q)

Thus Kelvin's law should read (&} 1l,, or, more loosely: If mechanical energy can bsiéis
pated to internal energy, then heat cannot be cetelpl converted to mechanical energy. Our
second law is also restricted to states satisfidng

We now state our version of the second law of tleelynamics:

It is impossible to transfer an arbitrarily larga@unt of heat from a stan-
dard heat source with processes terminating xed State oZ. (D)

In other words, for every staBeof Z,

Sup{H;: P terminates aB } < co. (1
Since (Il) holds, we can define tbatropyS(B) of stateB:
SB) = Sup{H./T,: P terminates aB }, (2)

whereT, = 273.16. (The temperature of triple point wasedefined to b& in the Kelvin tem-
perature scale. But for us, for noW,is just a number, not a temperatufiégeonly reason for
introducingT, is so our units of entropy and temperature witeagwvith those of conventional
thermodynamics; the entire development below cbeldhade without it.)

Entropy is clearly a function of stat§B) has a simple physical meaning: it is the most hea
(divided byT,) that can be transferred from a standard heatsanrprocesses terminatingat
Note that we assign an absolute entropy to a statgust an entropy difference between states.

Consider a particular proceBsfrom stateA to stateB. Precedd? TN
with any proces®' which terminates aA. See Fig. 2. SincB' + P ter- P..,.x"A ip
minates aB, we see from (2) that
o" ‘B
H, /T, +H,/T. < YB). (3) Z X
If we take the supremum of (3) over all proceReterminating atA, Fig. 2. If P is adiabatic,
then by (2) we obtain thenS(A) < §B).
SA) +H/T, < §B). (4)
If H, = 0, then
JA)<SB). H-=0) ®)



If P is adiabatic, then no heat is transferred.td@ hus the heat transfer device need do nothing,
H, = 0, and (5) holds. We have a simple proof offtre¢ fundamental property of entropy: it
does not decrease in an adiabatic proced3.idfa reversible adiabatic process, then also from
(5), SB) < SA), and sc5A) = IB).

Our definition ofSdid not use a notion of temperature. Intuitivétys was possible because
we used the standard heat source as a "common mediexchange" for the different tempera-
tures ofZ during a process. We now define temperature uSi@pnsider an infinitesimal revers-
ible process which transfers h&gl and no work t&. Define theemperature Tof Z by

UT =dID. (6)

According to (1), ifdQ > 0, then the same state change can be made adiabatic process
which delivers work t&. Since this process is adiabatd&= 0. So from (6)]T > O.

Let P' be an infinitesimal quasistatic process fromestato
stateB with entropy changeS Let P" be the reversible process
from stateC to stateA with the same healQ asP' but with no
work done orZ. See Fig. 3. Consider the proc&ss —P" + P
During —P", heat-AQ is transferred t&. During P', these trans- L
fers are reversed. Thus we may take= 0, and (5) applies.  Fjg 3 ds> GO/T.
Using (5) in the formr§B) — SC) = §A) — SC), and using (6)
for P,

ds P’

SQIT

dS= oQIT,

which is the second fundamental property of entrdp#' is reversible, thedS = 5Q/T. For a
finite reversible quasistatic proceAS = [JQ/T.

This completes our statement of the second lawnitieh of entropy and temperature, and
derivation of the two fundamental properties ofrepy.

3. Further Consequences of the Second Law. It is natural to ask: What processes
terminating aB give largeH's in the definition (2) 0o§B)? We give two answers.

(i) Let P andR be two processes fromto B, with R reversible. Supposgd, < H,. Then for
the cyclic processR+ P, B ?B, H_;, , =—-Hy + H, > 0. Repeating this process over and over, we
can makeH as large as we like in processes terminating dthigs contradicts Il. Thubi; = H,.
If P is itself reversible, then aldd, > H, and sdH, = H;. Thus reversible processes frénto B
(if they exist) all have the sanit which is the largedi for processes frorA to B.

(i) Let P be a process from stafeto stateB. Let P' be a reversible process startinghan
which the heat transfer device transfers positea fromZ to the standard heat source. Théh
+ P terminates aB. We haveH ..., =H, + H, andH . = -H,. > 0. Thus

H—P‘+P . HP' (7)

According to (7), we obtain a large (i.e.,H,;) thanH, if we reversibly transfer positive heat
from Z before starting.

If absolute zero is unattainable in the senseftbat every state of (no matter how cold)
there is a reversible proceBswhich transfers positive heat fraf) then (7) shows that the Sup
in the definition (2) ofYB) is not attained.(Analogously, Sup{x: & x < 1} exists, but it is not
attained.)



A compound syste#@ = (Z,, Z,) is a thermodynamic system composeduifsystemz, and
Z,, separated by a wall. The subsystems must theasbk thermodynamic systems in the sense
of this paper. In particular, they must be closEdus the wall must not allow the transfer of
matter. During a process df the wall can be adiabatic or diathermic, or alée between the
two. The wall can, e.g., divide a container of gde two parts. During a process it can be fixed
or movable, or alternate.

States ofZ are of the fornB = (B,, B,) whereB, is a state oZ,. These states have an entropy,
SB,, B,). In addition,Z, andZ, have their own entropie§,(B,) andS,(B,).

We now show that entropy is additive over subsystem

SB,, B,) =S(B,) +S(B,), (Rev) assumed, (8)
where the statement (Rev) is:
There is a reversible process between every patates of a thermodynamic system. (Rev)

This assumption is commonly made: Authors who detime entropy difference between two
states agdQ/T along areversible process between the states assume, explicitlynpliditly,
(Rev). But it is desirable to find a proof of (8jtmout (Rev).

Now let (A, A,) be any state of the compound systBmAccording to (Rev), there are
reversible processds of Z from A to B. If R, is followed byR,, then R, R) is a reversible
process o¥ from (A, A)) to B, B,), and

Hr, ry = Hr, + Hr,- 9

We noted above that all reversible processes betive® given states have the same, and largest,
H for processes between the states. It followsithdetermining the Sup in the definition (2) of
S(B), we need not usal processes terminating Bt we need use only a single reversible process
from each starting stat® to B. Use R, R,) as the reversible process frof,(A,) to B, B,) in

the definition (2) ofSB,, B,), and useR as the reversible process frémto B, in the definition

of §B,). Then take the Sup over aR,(R,) in (9) to obtain (8).

Now suppose thaf, andZ,, with temperature$, andT, =T, + dT > T,, have an adiabatic
wall between them. Make the wall momentarily diathie, and suppose heéf transfers spon-
taneously fron¥, to Z,. We suppose that this transfer is reversible. H@ndS= 0, as this is an
adiabatic process &. From (6),dS = XQJ/T, anddS, = -&Q/T,. And from (8),dS=dS + dS.
Putting all this togetheQ/T, - &XIT, = 0. ThusdQ > 0O; positive heat transfers from the system
at the higher temperature to that at the lowegdecord with our intuitive understanding of tem-
perature. Note that since (8) was used, this igg@t@nly under the assumption (Rev).

4. Relationship to Conventional Thermodynamics. Intuitively, our second law states
that there is a limit to how cold can be. We formalized this in Il by assuming aitliom H for
processes terminating at a given stt&Ve might have instead tried to assume a limiQoior
processes terminating Bt But this does not work. To see this, let a CanyoteR of Z starting
and terminating aB have net hed®, > 0. Repeatindr n times, we have a process wWiaF nQ;,
which can be made arbitrarily large.

We now show that the entropy and temperature basdtare the same as those based on
Il.. LetR be a reversible process frakto B. Applying (4) separately tB and-R gives

A4S, =9B) - SA) =H/T,. (Rreversible) (20)



Considered as a reversible processZof heat transfer device + heat source in FigR1s
adiabatic. Thus th& based on |l also gives (10). (Remember that we require the taasfer
device to be returned to its original state aRgrThis shows that the entropies based on Il and
Il, have the same entropy differences, which is @t th defines. Note that in the analysis of
(10) via our second laviT,, is, as we have emphasized, just a number, wharehe analysis of
(10) via Kelvin's second lawT, is the Kelvin temperature of the standard hearcsuThe
numerical equality of the twd,'s ensures the numerical equality of our and Ké&entropy.

The definition (6) ofT agrees with the Kelvin temperature scale. Foig&glid in conven-
tional thermodynamics with the same meanings orritite side fordS (as we have just seen)
and dQ. In particular, we assign temperatdrgto the standard heat source, in accord with the
Kelvin temperature scale.

Theorem. Il = (Il + (5= 0)). The proof has three parts.

(i) I = 11,. We obtain the result by showing thdt, contradicts consequences of Il. Sup-

pose then that a thermodynamic sysi&niolates I|: Z, goes through a cycle, transferring posi-
tive heatQ from a heat sourceS at temperaturd and delivering positive workHS is not the
standard heat source of Fig. 1. For in gendra,T,.) Consider this proce$sas a process &,
+ HS ThenP is adiabatic, and sd4S, = 0. Assume (Re\).Then as shown abov8,is additive.
Thus4S; is the sum of the entropy changeZpandHS. The entropy change &f is zero, since
it goes through a cycle. The entropy changdi8fis —Q/T. Thus4S, = 0 + ¢Q/T) < 0. This
contradiction ta4S, = 0 establishes I

(i) Il = (S = 0). One process in (2) terminating Btstarts atB and immediately stops,
doing nothing. For this procebk = 0. Thus§B) = 0 in (2).

(iii) (I, + (52 0)) = II. Let S, be Kelvin's entropy. Le® be a process terminating at state
B. Considered as a processdft heat transfer device + heat soureds adiabatic. Thus an
analysis based onIbives

S(B) = &(A) - H:/T, 2 0,

whereA is the starting state éf. SinceS (A) = 0, H, < T,S(B). Since this is true for aR termi-
nating atB, Sup{H,: P terminates aB } < o, which is Il. This completes the proof.

We now discuss the relationship between Il andtilrd law of thermodynamicSlt is con-
venient to divide the third law into two parts:

S>0. (i)
S0K) = 0. (Ilii)

(As OK is unattainable§0K) = 0 is only an abbreviation f& — 0 asT - 0K.)

With this terminology, we can restate our theorédm: (I, + Illi).

Il doesnot imply Il1i. For a monatomic ideal gas satisfies HBut violates Illi: its entropy
S - - asT - O0K.2 In view of our theorem, this means that our sedamdis stronger than
Kelvin's.

Il does not imply Illii. To see this, consider glycerol, whose liquid foimeezes to a
crystalline form at 291K. Liquid glycerol can albe supercooled to a glassy form near OK. In
processC, start with the crystalline form near OK and resilely heat it to the liquid form,
arriving at stateB. In processG, start with the same sample in the glassy fornt 6&g and



reversibly heat to statB. The entropy changes for these processes havenessuredising
4S=[5QIT. The result iAS. >AS,.°

From (10),AS. > AS, implies thatH. > H;. Thus processes which start with crystalline
glycerol near OK contribute larget's to the supremum in the definition (2) §fB) than
processes which start with glassy glycerol near Dls is not a problem for Il.

But there is a problem for lllii. For &0K, crystalline) = 0, thedS. > AS; implies that
SOK, glassy) > 0, violating lllii. The usual expktion is that since a frozen in atomic disorder
in glassy glycerol persists to OK, glassy glycesohot "really” in equilibrium, and so one
cannot speak of its entropy.l am not entirely happy with the explanation irewi of the
remarks about equilibrium in Ref. 3. And if glaggycerol is not in equilibrium, can one speak
of its Kelvin temperature, which is defined only &quilibrium states?

Be that as it may, it is entirely consistent withthat there be a substance like
glycerol whose glassy forns in equilibrium (in the sense of the remarks in R&f and
hasS§OK glassy) > 0, violating Illii. This shows thdtdoes not imply Illii.

We have seen that a full discussion of lllii invedvthe atomic structure of the system,
whereas llli is independent of microscopic consatiens. We might call 1lli théhermodynami-
cal part of the third law, and Illii thetatistical mechanicgbart. We can then restate the theorem
above by saying that our second law strengthengifelby incorporating the thermodynamical
part of the third law. Our purely thermodynamicatend law needs no help from an atomic pic-
ture of matter to establish the existence of amlabs entropy and its properties in a simple and
general manner. This leaves the delic6K) = 0 statistical mechanical part of the thiaavlas
a separate matter.

5. Auxiliary Assumptions. As stated in 81, other treatments of entropy usdliary
assumptions which restrict their generality. Weegseveral examples.

Coordinates. Boyling™ gives the example of two containers of water epeipwith pistons
and separated by a diathermal wall. Usually thamdinates suffice to specify the state of this
system (e.g., the volumes of the two containerstaenl common temperature), but if the water
in both containers is at a triple point, then faoordinates are needed (e.g., the volumes and
energies of the two containers, which can be vanddpendently over a limited range without
changing the common temperature of the containdhsjlefinitions of an entropy function using
coordinates of which | am aware requiréx@d number of coordinates to describe the states of
the system. These definitions do not assign amopytto Boyling's system. We do not use
coordinates.

Mathematically speaking, a state space with a fixechber of continuous coordinates is a
manifold Boyling, and also Coopéf,use the more general structure ofopological space
Boyling points out that the state space of his elanis not a manifold, but is a topological
space. Our definition assigns an entropy to higegys

In defining a quasistatic process dgaar continuumof states, we have implicitly assumed
that our thermodynamical state spaces are topabgigcaces. For a topological space is the
minimal structure necessary to give this meanintinear continuumof states is a continuous
image of a closed interval of the real line (thaugfas an interval of time) in the state space.

Carnot Cycles. Thomsen and Hartka give the example of water fsatemperature of
maximum density, where there are "strange" Cameles™® For example, there are cycles with
one adiabat and one isothermal. Most definitionglidolute temperature use "normal” Carnot
cycles, with two adiabats and two isothermals, t@edly assume that normal, and only normal,



cycles exist. These definitions do not establigt thater has an absolute temperature under the
conditions of the example. A discussion of entrbpged on an absolute temperature restricted in
generality is similarly restricted in generalityevlo not use Carnot cycles.

Homogeneity. Callen assumes that entropyhmogeneoys.e., if (in Callen's terminology)
X is a set of extensive coordinates defining théestd Z, then forA > 0, SAX) = AYX).*
Homogeneity is ampproximation which is obtained by ignoring "surface effecté/e do not
make this approximation.

There are two other conditions often discusseelation to entropy. One ncavity

S(AX + (1-A)Y) = A9X) + (1-1)Y), 0<A < 1.
The other isuperadditivity

SX+Y)23X) + ).

The idea of superadditivity is that if systems withordinatesX andY are combined, then the
total entropy is nondecreasing. Note that this iglifferent situation than additivity over
subsystems (8). In (8), the subsystems retain ara&p identity. For superadditivity, the
subsystems are combined, destroying the subsystems.

We now show that, assuming (Rev), our entropy eradditive without using coordinates.
Let systemZ be in stateB, i = 1,2. Let theZ be separated by an adiabatic unmovable wall,
forming composite systerd. Then by the additivity of entropy over subsyste(@s Z has
entropyS(B,, B,) = §B,) + YB,). Now remove the wall, allowing the systems to bore. This is
an adiabatic process d@f(which destroys the subsystems), terminating stage ofZ, which we
denoteB, + B,. Since the process is adiabatic,

9B, +B,) 2B, B,) =9B,) + 9B,). (Rev)assumed.

This proves superadditivity under the assumpticevjR
One relationship between superadditivity, concawiyd homogeneity is*

(Superadditivity + Concavity)» Homogeneity. (12)

Since homogeneity is only an approximation and sagutivity holds, it follows from (11) that
concavity fails. (Of course entropy is usually apgpmately concave.)

Note added 1/18/08: H. Touchette has given exangflepin models in which entropy is
not concave. (“Simple spin models with non-concantopies”, Am. J. Phy36, 26-30 (2008).)

All this has bearing on the debate as to whetheemuaditivity or concavity is the key prop-
erty of entropy® In particular, the claim that "The essence of skeond law is concavity"
seems too strong.

Adiabatic Accessibility. Carathéodory's version of the second law statgdritevery neigh-
borhood of a staté, there are state® not adiabatically accessible frofa Buchdahl's very ele-
gant development of thermodynamics is explicithgdxh on the additional assumption tiat
must then be adiabatically accessible fr@n® Both Boyling and Cooper also make this
assumptiort? But Konig gives this exampf@: Consider a mixture of hydrogen and oxygen
enclosed in a rigid adiabatic chamber. Explodentirgure. Then cool it, reducing its entropy
part of the way to that of the original mixture. Themither the original nor final state is
adiabatically accessible from the other. And Thambkas given the example of a cylinder
enclosing a g&4 The cylinder has a piston which moves with sligiriction. States of the same
entropy but with different positions of the pistare not adiabatically connected. We make no



assumptions about adiabatic accessibility. (Landgbeliscusses other implicit assumptions of
several authors including Carathéodory who base their thermodynamics on Carathéodory's
axiom.)

Buchdahl'’s® and Zemansky and Dittmaff'sapproach are based on the existence of
reversible adiabatic surfaces, in which two stateson the same surface if and only if they have
the same entropy. Such surfaces do not exist ing&ar Thomsen's example.

| thank an anonymous referee for pointing out aaran an earlier version of this paper and
for several valuable suggestions.
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