Sturm-Liouville Theory Via
Nonstandard Analysis

ALAN L. MACDONALD

1. Introduction. It is the purpose of this paper to use the tools of non-
standard analysis to solve Sturm-Liouville systems of differential equations.
A complete statement of what we shall prove is given in the main theorem below.
A more general equation and more general boundary conditions than in (1)
could have been handled but would have made the exposition technically more
difficult.

Not much of nonstandard analysis is needed; the paper by Luxemburg ([6])
is more than enough and is easily accessable to nonlogicians. Other references
are ([5]) and ([7]). If z and y are nonstandard real numbers z = | ¥ will mean
that £ — y is infinitesimal. We shall use °z to denote the standard part of z.
Recall that a standard sequence x, — z if and only if x, = | « for all infinite n.

Two standard approaches to the theory of Sturm-Liouville systems can be
found in ([2]) and ([1]). The present approach seems considerably simpler in
conception and execution.

Occasionally in the paper we shall use standard results of analysis (e.g.,
Bessel’s inequality and the uniqueness of solutions of second order linear dif-
ferential equations with initial conditions) when standard proofs are simple
and a nonstandard proof would not be particularly illuminating.

Main Theorem. Consider the differential equation

0y Y'2) — Q@)Y (@) + \Y(2) = F(x), Y(0) = Y(1) = 0
and the associated homogeneous equation
2 Y"(@) — Q@)Y () + \Y(x) =0, Y(0) = Y(1) =0

where Q and F are continuous and Q is non-negative. Let Q, < Q(x) = Q, on [0, 1]
Then:

(a) The equation (2) has a non-zero solution only for a countably infinite set
of eigenvalues 0 < A\, < N\ < +-- , where j'r° + @ £ \; £ °7° + Q, . For
each eigenvalue \; there is a unique normalized solution Y ;(x). If 1 5= j, then (Y, Y;)
= 0. The functions Y; are uniformly bounded. For a function G (x) with two con-
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tinuous derivatives and satisfying G(0) = G(1) = 0 we have

60) = 3 (@, V)Y,

where the series converges untformly and absolutely.
() If for every 4, N 5= \; , the equation (1) has a unique solution

rw = 3 &Ly

where the series and its derivative converge uniformly and absolutely. If
the equation (1) has a solution only if (F, Y,) = 0. If (F, Y,) = 0, then

>
1
>
b1

F ) Yi

Y@ = 3 ELdy
i#n A >\i

18 a solution and any other solution differs from this one by a constant multiple

of Y, . The series and its derivative converge uniformly and absolutely.

2. The associated difference equation and its solution. Let N be an
arbitrary but fixed infinite natural number. Set q(k) = Q(k/N), (k) = F(k/N),
and y(k) = Y(k/N) fork = 0,1, --- , N. To motivate the difference equation
which will be used to solve (1) and (2) we need to observe that if & is a function
defined on [0, 1] and A" (z) exists and is continuous then

sy _ 1 M 4+ Az) — 2h(2) + h(z — Ax)
® 1) = i, s

uniformly in x. (Proof: Expand h in a Taylor series with two terms plus a re-
mainder and use the uniform continuity of h”.) For any sequence a(k) set
Aa(k) = a(k + 1) — a(k) and A’a(k) = a(k + 1) — 2a(k) + a(k — 1). (Note
that A’a(k) = A(Aa(k — 1)).) In view of (3) we have forz = | k/N, Y"(x) =
Y"”(k/N) = , N°A®y(k). Thus we shall study the difference equations

4) N*A® y(k) — qk)y(k) + 7y(k) = f(k), y(0) = y(N) =0
and
&) NA* y(k) — qk)y(k) + ry(k) = 0, y(0) = y(N) = 0.

It turns out that (4) and (5) can easily be solved. Then using the solutions of
(4) and (5) we shall construct solutions of (1) and (2).

First of all note that there cannot be linearly independent solutions of (5)
with the same 7. For any solution is entirely determined by recursion by y(1)
and y(0) = 0. Thus if y, and y, are solutions and y,(1) = cy.(1), then y, = ¢y, .

Consider the quantities y(1), ¥(2), - -+ , y(W — 1) as components of an N — 1
dimensional vector y. Define an (N — 1) X (N — 1) matrix 4 = (a;;) by a:; =
2N? + q(@), a;.;s1 = a;.i-; = —N?, and A,; = 0 otherwise. Then (5) is equi-
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valent to
Ay = 7y,y(0) = y(N) = 0.

Since A is a symmetric matrix, there are exactly N — 1 orthogonal solutions

Yi,¥2, - ,¥x-1and N — 1eigenvalues r, < 7, - - - < 7y, . (Strict inequality
because of the comments above.) Translating this in terms of (5) there are
N — 1 orthogonal solutions y, , 5, * -+, yxy-1 and N — 1 eigenvalues r, < 75 -+ +
< ry-1 . It will be convenient to take

(6) Wyl = (i, y) =N

We now solve the non-homogeneous equation (4). If r # 7; for all 4, then a
solution of (4) is

@) y(k) = E v, 2 (’“)

since
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since the last sum is just the Fourier expansion of f in view of (6). Similarly,
if 7 = 7, and (f, y.) = 0, then a solution of (4) is

@®) uh =+ 3, n L8

i#*n

3. A special difference equation. In order to obtain more information
about the y; and r; it will be necessary to obtain explicit solutions of

1/2
©) N2A%(k) + os(k) = 0, s(0) =0, s(1) = "—N—
for 0 < ¢ < 4N”. Standard methods for solving homogeneous linear difference
equations with constant coefficients ([4], p. 26) provide the unique solution

10) s,(k) = ¢ Sin &%
where ¢ = ¢(o) is chosen so that s,(1) = (¢)"*/N and

1 ?4N? — o)
2N® — &

where Tan™" takes values in the Ist and 2nd quadrants. The solution may be

11) 6 = N Tan
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verified directly by plugging (10) into (9), using Sin (z + y) = Sin z Cosy +
Cosx Siny, and then using the identity Cos™ z = Tan™* (1 — z°)"?/z. The
qualitative behavior of ¢ is deduced by noting that as ¢ increases continuously
from 0 to 2N?, ¢'/*(4N* — ¢)"’? increases and so & increases continuously from 0
to Nx/2. Since Tan™'(—z) = = — Tan 'z we see that

(12) 4N* — p = Nx — 5.

and so as o increases from 2N* to 4N?, ¢ increases from Nx/2 to Nx. Thus
if s is also to satisfy

(13) 8,(N) =0
we may pick eigenvalues ¢; so that
(14) 6; = jm i=12 .-, N — 1
We must now estimate ¢ and ¢, . I claim that
(15) 20_1/2 é & é 50’”2,
1 1 _3

Lo <5
(16) 25'12 = o; = j2 b}
17) &= (a)"
for ¢ finite, and
(18) ag; = ‘7.21l'2 and Oy-§ = 4:N2 - .’]'21l'2

and j finite.
For N?°/2 < ¢ < 4N*?, wehave Nx/2 < 6 £ N= and so

< 2N £ ;i:e < 4N = (320)'”
verifying (15) in this case. Using d/d8 Tan™'¢ = (1 + 6% and expanding
the geometric series it is easy to obtain

3

(19) b—L <Tan6<6 0=
3

IIA

1.
We apply these inequalities in (11), setting ¢ = aN*, 0 < a < 1/2. (Note that
the inequalities (19) apply for ¢ < N*/2.) Now
L PPN = ) AN — o
2N* — ¢ = 2N? — ¢
01/2(4N2)1/2 20_1/2
C—aN T 2-a
Using the other inequality in (19) we obtain

1/2 \1/2 1/2 3/2
om0 — @)'’N .,,2[(4 — @) a4 —a) ]
21) ¢ =2 N Tan SN? =0 5 54

(20) 4 = N Tan

=N
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Since 0 £ a = 1/2, simple estimates from (20) and (21) show (15) is valid
for 0 £ ¢ £ N?/2 also. Now 4; = jr so (16) follows from (15). If ¢ is finite
in (20) and (21) then « = | 0 and this yields (17). If j is finite, then so is ¢; by
(16). Then (17), (14), and (12) prove (18).

Now we shall estimate ¢ and |[s,||. We shall be interested in the range

(22) 3/4 < o < 4N* — 3/4.
From (9), (10), (12), and (17), we have
1 e v
(23) ¢~ NSNS NSmaan = 3 <27
and for ¢ finite,
(24) c=,d"%6 =1
By ([3D), p. 23),
kzNj Sin® bk = (75/2 - %’%%-ﬁ) :H (Sin b 5 0).
Thus
25) s, | = czN(l/2 +1/ay - SnCLE ;/)X,/ il )

=cNB, 1/T<B=1,

where the inequality for g8 follows from an estimate of N Sin é/N similar to
that in (23).

4. Comparison of eigenvalues. For any y(n) with y(0) = y(N) = 0,

Quw — A%, y) = (g — A%, y) £ (Qu — A%, ).

By the (finite dimensional) mini-max principle ([3], p. 181) the eigenvalues of
Q.y — A% dominate those of qy — A*y which in turn dominate those of Q,y —
A%y, ie.,

(26) Ui"‘QléTi.S_a'i'I‘Qz-
5. Estimates of i, . As before, let r; and y; be the j* eigenvalue and eigen-

solution of (5) and let s, be the solution of (9) with ¢ = r; . Suppose ¢ satisfies
(22). Set,

o)) = 5,0) = o 3 sk = ).

A quick calculation using s,(—1) = s,(1) = 7,"*/N ((10) and (9)) shows
that N°A% + 7,z = 0, 2(0) = 0. Since solutions of (9) are unique, z = as, for
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some constant a = a(s). Thus

@7) 1) = as ) + 7 2 4@l — 9.
Now
@) | X a0 = | S s il llall < 2.

by (6) and (23). From (27), we have |asc, (k)| < |ey;(k)| + 2¢Q, . Thus, a’c’s,*(k)
< fylk) + 46°Q.ly; (k)] + 4¢°Q.°. Summing this and using the inequality

N
kz 1-ly,(k)] < N |ly;]| = N

we obtain a’c’||s,||* £ ¢’N + 4¢°Q.N + 4¢°Q.°N = ’N(1 + 4Q, + 4Q,°).
Using (25) then yvields

(29) a’c® £ 7(1 + 4Q, + 4Q.").
Finally, using (27) and (28) gives
(30) ly;(k)] < ac + 2Q; = M, M finite, standard.

The subscripted M’s below are finite constants. Applying A to both sides
of (27), using (10) and the inequality

[Sin # — Sin y| =

f Cosldt’ < e -yl

and then using (29) and (23) gives
|Ay; (k)| < acé/N + Q.Mcs/s'°N < M, é/N.
For j < j,, jo finite, o; + Q> < 2¢; by (18). Thus by (15), (26), and (16),

6 =17 = 57':'1/2 = 5(o; + Qz)l/2 = 5(201‘)1/2 =M,
By making M, larger if necessary this holds for j < j, also. Thus
(31) |Ay; (k)| = Msj/N.

The estimates (30) and (31) hold so far only under the assumption (22).
The inequality 3/4 < r; is always valid by (26) and (18), but 7; < 4N” — 3/4
may be violated (by (26) and (18)) for j close to N — 1. However, for these
values of j we consider y; as a solution of

N*A’y — (¢ — Qa)y + (r — Q)y = 0.

The eigenvalues, r; — Q. , of this equation are smaller than 4N* — 3/4. Repeat-
ing the arguments of this section with s,_g, instead of s, shows that (30) and
(31) are valid for all j.
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6. Construction of the solution. In this section j will be finite. Using (31)
we obtain

G2) i) = 30l = | 2 a0,

Thus if k/N = |l/N, then y;(k) = , y.(l). This allows us to define a standard
function Y;(z) by setting Y ;(x) = %, (k) for any value of k such that z = | k/N.
This Y; will be the solution of the differential equation. Note that Y, is con-
tinuous by (32).

In order to proceed we need the following lemma.

< |k — 1| MJj/N.

Lemma. If h(t) is a standard continuous function, x = | I/N = 1, and H(k),
k=1,2 ... l4s an internal sequence satisfying h(k/N) =, H(k) for all k, then

f’ Kt dt = | 1/N El_:H(k).

Proof. Let S be the largest of the finite (in the nonstandard sense) set of
numbers |h(k/N) — H(k)|. Then S = |, 0. Now

[zN]

fz h(t) dt = lim 1/N Z h(k/N) = | 1/N i h(k/N).

n—o

But
‘l/N ‘IV__: hk/N) — 1/N l;H(k), =8=,0.

This completes the proof of the lemma.

Using the lemma, (27), (10), and (24) we find, setting \; = °7; ,
33)  Yi(x) = %a Sin A,z — 1)), f Q)Y (¢) Sin A\, — ) dt.
0

(The constant a is finite by (29).) Differentiating twice shows that Y; is a solu-
tion of (2). Several parts of (a) of the main theorem are now accessable. The
Y; are orthogonal since the y; are orthogonal and so by the lemma (f ¢ #= j),

N 1
0= 1IN Xyl = [ Y.0¥.0 .
Also by the lemma and (6)
1 N
[ viwa= 1N ¥ yrm =1
0 k=0

and so the y; are normalized.

The eigenvalues \; are distinct since any solution Y of (2) is determined by
Y(0) and Y’(0) (1], p. 31). Thus if Y and Z are two solutions with the same \
and Y’(0) = ¢Z’(0), then Y = ¢Z. The inequalities on the \; follows from (26),
(14), and (18).
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7. Expansion of C” functions. Let G be a function with two continuous

derivatives and G(0) = G(1) = 0 and set g(k) = G(k/N), k. =0,1, --- , N.
We shall need the formula for summation by parts,
N N+1

> k) Avk) = u(k)o(k)

(4], p. 17). Let |G"(x)] = P. For 0 <
formity of the limit in (3), we have |[N*
Two summations by parts give

— v(k + 1) Au(k)

k < N set z = °(k/N). Using the uni-
Ag(k)| = |G"(k/N)| = | |G" ()| =

(34) = | T A~ D)
S Ag(k>|

= 2_ yi(k + 1) A(Ag(k))

= k;)y,-(k) Azg(k)l
< MP/N

by (30). Using the Fourier expansion of g and the lemma we have for finite n,

G(x) =, g(k)

VN 25 i s 9yi(k)

(f Y;(G(0) dt>Y<-'v)+ UN X @, b,

i=no

Thus to show the uniform convergence of the Fourier series of G it is sufficient
to show that the last sum above is arbitrarily small, uniformly in k, for n, large.
Let |G(z)| =< G. Then using (30), (34), the Cauchy-Schwartz inequality, (26),
and (16) we have

@5 N X (@i, ow:k)| = M/N Z i o)

1=no i=no

M/N 21/71 l(qy1 - N2A?/: ) g)l

i=no

IIA

M/N ): 1/7/(Q.NG, + NMP)

i=no

M’ 21/7, M’ 22/3

i=no i=no

MY 22/; -0

j=ng
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as my — . This proves the uniform convergence of the series. The absolute
convergence is proved by estimating |(Y; , G)Y(x)| with techniques similar
to those in (35).

If Y were any other normalized solution of (1) besides the Y; it would be
orthogonal to each Y; ([1], p. 279) and so would be zero by the above proved
expansion. Thus the Y; are the only solutions. This completes the proof of (a)
of the main theorem.

8. Solutions of the non-homogeneous equation. If for every j, X\ & \; , set

(36) vw = 3Dy,
Then formally
(37) @) = X el v,

Using the Cauchy-Schwartz and Bessel inequalities as well as (31) and noting
that if ¢ = | k/N, then Y,;/(z) = | NAy;(k) we have

o |BYe vl s (S n) (2(42))
< 11 (35 o2 is)

The last series converges by (16) and so the series (37) converges uniformly
and absolutely. The proof of the uniform and absolute convergence of (36)
is easier, using (30). Thus Y’ is represented by (37).

Let a standard ¢ > 0 be given. Choose n, so that for all z, n = n, ,

IIA

(39) ‘Y’() E(Y“F)Y'</)|<e.
Using the lemma we find

(40) Zl(}\Y1’F)Y’()_|Z:l(?/',f)AJ(/c)'

Using techniques similar to those in (35) we obtain

Z (Jz ’f) (’c) Z (y: vj) Ay,(lc)‘ < e

i=1 i=1

(41)

for n > n, (it may be necessary to increase n,). Let y be the solution of the non-
homogeneous difference equation as in (7). Then

u2) N sy = 3 8D py ),

On the other hand, summing the identity N*A’y(k) = {(k) + q(k) — Ny(k)
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and using the lemma gives

@) N Ay = X 06 + a@u® — W) + Ny

= [ #0 + ey - 2Y©) dt + Y0
It follows from (39) — (43) that
Iww=ﬁ%m0+0wno—nm»m+ymx

Differentiating this shows that Y is a solution of (1). There can be no other
solution since the difference of two solutions is a solution to (2) and is thus,
as we have shown, zero.

If Y(z) is a solution of (1) with A = X, , then multiplying both sides of (1)
by Y. and integrating gives

Y” — QY +\.Y,Y,) = (F,Y,).
Two intergrations by parts show that (Y, Y,) = (¥, Y,”) so we have
O = (Yn” - QYn + )\nYn ) Y) = (F, Yn)-
If (F,Y,) = 0then
F, Y)

oo v
is a solution satisfying everything claimed. The proof is similar to that above,
using (8).

This completes the proof of the main theorem.

Remark. The only essential use of sections 3, 4, and 5 is to produce (30),
(31), and an estimate of the form 1/7; < C/j” for some finite constant C. (The
use of s,(k) in (33) can be eliminated). It would be desirable to obtain these facts
more simply, perhaps using theorems about eigenvectors and eigenvalues of
symmetric matrices with special properties, since this would eliminate the least
intuitive and most technically involved parts of this paper.
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